[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 21, Issue 3 (6-2023) ::
Int J Radiat Res 2023, 21(3): 391-398 Back to browse issues page
Bystander Effect of Sonodynamic Therapy in the presence of Gold Nanoparticles: An in-vitro study
A. Shanei , R. Kamran Samani , H. Akbari-Zadeh , M. Rezaei , M. Kazemi
Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran , masumrezaei@yahoo.com
Abstract:   (1235 Views)
Background: Bystander (B.s) effect can influence non-irradiated cells and affect the desired effect in cancer treatment. This study was conducted to assess this effect on simultaneous administration of ultrasound (US) and Gold nanoparticles as a sonodynamic therapy (SDT) which is an important newly stimuli-responsive method in cancer treatment. Materials and Methods: Firstly, the appropriate concentration of Gold nanoparticles (GNPs) and US intensity for SDT on melanoma cancer cells (A375) were evaluated. After treatments, the target cell culture was transferred to the bystander cells and the induced bystander effects including cell viability, apoptosis, expression of P53 (a promoter of apoptosis gene) and HO-1 (an inhibitor of apoptosis gene) were examined. Results: According to the MTT results, 50 µg/ml concentration of GNPs and 1.5 W/cm2 intensity of US wave were selected. Our results revealed that SDT induced B.s effect can alter the cell viability and apoptosis up to 20% and 51.61%, respectively. Moreover, a 2.9-fold increase in p53 gene expression and a decrease in OH-1 gene expression to 0.181-fold in comparison to the control groups were observed. Conclusions: These results confirmed that B.s effect of sonodynamic can reduce the cancerous cell viability. Our finding showed that this treatment can potentially be an alternative to traditional treatment modalities.
Keywords: Bystander effect, sonodynamic therapy, gold nanoparticles, apoptosis, p53 & HO-1 genes.
Full-Text [PDF 938 kb]   (583 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. Miller KD, Siegel RL, Lin CC, et al. (2016) Cancer treatment and survivorship statistics. CA Cancer J Clin, 66: 271-89. [DOI:10.3322/caac.21349] [PMID]
2. Xu M, Zhou L, Zheng L, et al. (2021) Sonodynamic therapy-derived multimodal synergistic cancer therapy. Cancer Lett, 497: 229-42. [DOI:10.1016/j.canlet.2020.10.037] [PMID]
3. Shanei A and Akbari-Zadeh H (2019) Investigating the Sonodynamic-Radiosensitivity Effect of Gold Nanoparticles on HeLa Cervical Cancer Cells. J Korean Med Sci, 34: 1-12. [DOI:10.3346/jkms.2019.34.e243] [PMID] []
4. Ebrahiminia A, Mokhtari-dizaji M, Toliyat T (2013) Ultrasonics Sonochemistry Correlation between iodide dosimetry and terephthalic acid dosimetry to evaluate the reactive radical production due to the acoustic cavitation activity. Ultrason Sonochemistry, 20: 366-72. [DOI:10.1016/j.ultsonch.2012.05.016] [PMID]
5. Pan X, Bai L, Wang H, et al. (2018) Metal-organic‐framework‐derived carbon nanostructure augmented sonodynamic cancer therapy. Adv Mater, 30: 1800180. https://doi.org/10.1002/adma.201870163 [DOI:10.1002/adma.201800180]
6. Samadian H, Hosseini-Nami S, Kamrava SK, et al. (2016) Folate-conjugated gold nanoparticle as a new nanoplatform for targeted cancer therapy. J Cancer Res Clin Oncol, 142: 2217-29. [DOI:10.1007/s00432-016-2179-3] [PMID]
7. Mehrabi M, Esmaeilpour P, Akbarzadeh A, et al. (2016) Efficacy of pegylated liposomal etoposide nanoparticles on breast cancer cell lines. Turkish J Med Sci, 46: 567-71. [DOI:10.3906/sag-1412-67] [PMID]
8. Kosheleva OK, Lai T-C, Chen NG, et al. (2016) Selective killing of cancer cells by nanoparticle-assisted ultrasound. J Nanobiotechnology, 14: 46. [DOI:10.1186/s12951-016-0194-9] [PMID] []
9. Xu T, Zhao S, Lin C, et al. (2020) Recent advances in nanomaterials for sonodynamic therapy. Nano Res, 13: 2898-908. [DOI:10.1007/s12274-020-2992-5]
10. Heeran AB, Berrigan HP, O'Sullivan J (2019) The radiation-induced bystander effect (RIBE) and its connections with the hallmarks of cancer. Radiat Res, 192: 668-79. [DOI:10.1667/RR15489.1] [PMID]
11. Mukherjee S and Chakraborty A (2019) Radiation-induced bystander phenomenon: insight and implications in radiotherapy. Int J Radiat Biol, 95: 243-63. [DOI:10.1080/09553002.2019.1547440] [PMID]
12. Wang H, Yu KN, Hou J, et al. (2015) Radiation-induced bystander effect: early process and rapid assessment. Cancer Lett, 356: 137-44. [DOI:10.1016/j.canlet.2013.09.031] [PMID]
13. Bilak A, Uyetake L, Su TT. (2014) Dying cells protect survivors from radiation-induced cell death in Drosophila. PLoS Genet, 10: e1004220. [DOI:10.1371/journal.pgen.1004220] [PMID] []
14. Widel M, Lalik A, Krzywon A, et al. (2015) The different radiation response and radiation-induced bystander effects in colorectal carcinoma cells differing in p53 status. Mutat Res Mol Mech Mutagen, 778: 61-70. [DOI:10.1016/j.mrfmmm.2015.06.003] [PMID]
15. Rezaei M, Kamran Samani R, Kazemi M, et al. (2021) Induction of a bystander effect after therapeutic ultrasound exposure in human melanoma: In-vitro assay. Int J Radiat Res, 19: 183-9. [DOI:10.29252/ijrr.19.1.183]
16. Marín A, Martín M, Liñán O, et al. (2015) Bystander effects and radiotherapy. Reports Pract Oncol Radiother, 20: 12-21. [DOI:10.1016/j.rpor.2014.08.004] [PMID] []
17. Bazak J, Korytowski W, Girotti AW (2019) Bystander effects of nitric oxide in cellular models of anti-tumor photodynamic therapy. Cancers, 11: 1674. [DOI:10.3390/cancers11111674] [PMID] []
18. Verma N and Tiku AB (2017) Significance and nature of bystander responses induced by various agents. Mutat Res, 773: 104-21. [DOI:10.1016/j.mrrev.2017.05.003] [PMID]
19. Calatayud M, Asin L, Tres A, et al. (2015) Cell bystander effect induced by radiofrequency electromagnetic fields and magnetic nanoparticles. Curr Nanosci, 12: 372-7. [DOI:10.2174/1573413712666151124195846]
20. Daguenet E, Louati S, Wozny A-S, et al. (2020) Radiation-induced bystander and abscopal effects: Important lessons from preclinical models. Br J Cancer, 123: 339-48. [DOI:10.1038/s41416-020-0942-3] [PMID] []
21. Shanei A, Akbari-Zadeh H, Fakhimikabir H, et al. (2018) Evaluation of the therapeutic effect of 6-MV X-ray radiation on HeLa cells, in the presence of nanoparticles. J Isfahan Med Sch, 36: 25-43.
22. Shanei A, Akbari-Zadeh H, Fakhimikabir H, et al. (2019) The role of gold nanoparticles in sonosensitization of human cervical carcinoma cell line under ultrasound irradiation: An in vitro study. J Nano Res, 59: 1-14. [DOI:10.4028/www.scientific.net/JNanoR.59.1]
23. Sengupta S and Balla VK (2018) A review on the use of magnetic fields and ultrasound for non-invasive cancer treatment. J Adv Res, 14: 97-111. [DOI:10.1016/j.jare.2018.06.003] [PMID] []
24. Kooiman K, Roovers S, Langeveld SAG, et al. (2020) Ultrasound-responsive cavitation nuclei for therapy and drug delivery. Ultrasound Med Biol, 46: 1296-325. [DOI:10.1016/j.ultrasmedbio.2020.01.002] [PMID] []
25. Shanei A, Akbari-Zadeh H, Attaran N, et al. (2019) Effect of targeted gold nanoparticles size on acoustic cavitation: An in vitro study on melanoma cells. Ultrasonics, 102: 106-120. [DOI:10.1016/j.ultras.2019.106061] [PMID]
26. Kosheleva OK, Lai P, Chen NG, et al. (2015) Nanoparticle-assisted ultrasound for cancer therapy. Patent No. 9,138,476.
27. Brazzale C, Canaparo R, Racca L, et al. (2016) Enhanced selective sonosensitizing efficacy of ultrasound-based anticancer treatment by targeted gold nanoparticles. Nanomedicine, 11: 3053-70. [DOI:10.2217/nnm-2016-0293] [PMID]
28. Rostami A, Toossi MTB, Sazgarnia A, et al. (2016) The effect of glucose-coated gold nanoparticles on radiation bystander effect induced in MCF-7 and QUDB cell lines. Radiat Environ Biophys, 55: 461-6. [DOI:10.1007/s00411-016-0669-y] [PMID]
29. He L-L, Wang X, Wu X-X, et al. (2015) Protein damage and reactive oxygen species generation induced by the synergistic effects of ultrasound and methylene blue. Spectrochim Acta Part A Mol Biomol Spectrosc, 134: 361-6. [DOI:10.1016/j.saa.2014.06.121] [PMID]
30. Yahyapour R, Motevaseli E, Rezaeyan A, et al. (2018) Mechanisms of radiation bystander and non-targeted effects: implications to radiation carcinogenesis and radiotherapy. Curr Radiopharm, 11: 34-45. [DOI:10.2174/1874471011666171229123130] [PMID]
31. Ma Y, Zhang L, Rong S, et al. (2013) Relation between gastric cancer and protein oxidation, DNA damage, and lipid peroxidation. Oxid Med Cell Longev, 2013,1-6. https://doi.org/10.1155/2013/529173 [DOI:10.1155/2013/543760] [PMID] []
32. Xu S, Wang J, Ding N, et al. (2015) Exosome-mediated microRNA transfer plays a role in radiation-induced bystander effect. RNA Biol, 12: 1355-63. [DOI:10.1080/15476286.2015.1100795] [PMID] []
33. Bohari SPM, Aboulkheyr H, Nur ES, et al. (2017) Low intensity ultrasound induced apoptosis in MCF-7 breast cancer cell lines. Sains Malays, 46: 575-81. [DOI:10.17576/jsm-2017-4604-09]
34. Olsson MG, Nilsson EJC, Rutardóttir S, et al. (2010) Bystander cell death and stress response is inhibited by the radical scavenger α1-microglobulin in irradiated cell cultures. Radiat Res, 174: 590-600. [DOI:10.1667/RR2213.1] [PMID]
35. Koturbash I, Loree J, Kutanzi K, et al. (2008) In vivo bystander effect: cranial X-irradiation leads to elevated DNA damage, altered cellular proliferation and apoptosis, and increased p53 levels in shielded spleen. Int J Radiat Oncol Biol Phys, 70: 554-62. [DOI:10.1016/j.ijrobp.2007.09.039] [PMID]
36. Pae H-O, Oh G-S, Choi B-M, et al. (2004) Carbon monoxide produced by heme oxygenase-1 suppresses T cell proliferation via inhibition of IL-2 production. J Immunol, 172: 4744-51. [DOI:10.4049/jimmunol.172.8.4744] [PMID]
37. Fang J, Akaike T, Maeda H (2004) Antiapoptotic role of heme oxygenase (HO) and the potential of HO as a target in anticancer treatment. Apoptosis, 9: 27-35. [DOI:10.1023/B:APPT.0000012119.83734.4e] [PMID]
38. Bai W-K, Shen E, Hu B (2012) Induction of the apoptosis of cancer cell by sonodynamic therapy: a review. Chinese J Cancer Res, 24: 368-73. [DOI:10.1007/s11670-012-0277-6]
39. Was H, Cichon T, Smolarczyk R, et al. (2006) Overexpression of heme oxygenase-1 in murine melanoma: increased proliferation and viability of tumor cells, decreased survival of mice. Am J Pathol, 169: 2181-98. [DOI:10.2353/ajpath.2006.051365] [PMID] []
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shanei A, Kamran Samani R, Akbari-Zadeh H, Rezaei M, Kazemi M. Bystander Effect of Sonodynamic Therapy in the presence of Gold Nanoparticles: An in-vitro study. Int J Radiat Res 2023; 21 (3) :391-398
URL: http://ijrr.com/article-1-4835-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 21, Issue 3 (6-2023) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 50 queries by YEKTAWEB 4660