[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 21, Issue 3 (6-2023) ::
Int J Radiat Res 2023, 21(3): 413-419 Back to browse issues page
Effects of high-resolution measurements between different multi-row detectors on volumetric modulated arc therapy patient-specific quality assurance 
Y. Kunii , Y. Tanabe , A. Higashi , A. Nakamoto , K. Nishioka
Faculty of Medicine, Graduate School of Health Sciences, Okayama University, Shikata, Kita, Okayama, Japan , tanabey@okayama-u.ac.jp
Abstract:   (1346 Views)
Background: This study aimed to evaluate the optimal criteria and conditions in which single-measurement (SM) and high-resolution measurement (HM) provide a similar evaluation accuracy for ArcCHECK (AC) and Octavius (OT) detectors. Materials and Methods: In the SM and HM for AC and OT, we evaluated γ-analysis pass-rate differences for various conditions (criteria, calculation grid size, and shift of the isocenter) of 20 patients who received volumetric modulated arc therapy. All results of the γ-analysis pass rate were analyzed using the Anderson–Darling normality test. Results: In the AC detector, an SM with a 1%/1 mm criterion, 1.25 mm calculation grid size, and two standard deviations (2SD) of tolerance showed an evaluation accuracy similar to that of an HM. In the OT detector, an SM with a 2%/2 mm criterion, 2.0 mm calculation grid, and 2SD of tolerance had an evaluation accuracy similar to that of an HM. The γ-pass-rate data of the OT detector for the 3%/3 mm criterion did not follow a normal distribution in both SM and HM. Conclusions: Most high γ-analysis pass rates achieved using inadequate criteria may not detect errors; therefore, accurate evaluation is necessary for optimizing the criteria settings of individual QA devices based on the characteristics and the uncertainties of array detectors. The characteristics of a detector array can be enhanced by evaluating the relationship between SM and HM, which reduces the workload of patient-specific QA. 
Keywords: Patient-specific QA, volumetric modulated arc therapy, single measurement, high-resolution measurement, radiation treatment planning system.
Full-Text [PDF 1001 kb]   (677 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. 1. Ezzell GA, Galvin JM, Low D, et al. (2003) Guidance document on delivery, treatment planning, and clinical implementation of IMRT: report of the IMRT Subcommittee of the AAPM Radiation Therapy Committee. Med Phys, 30(8): 2089-2115. [DOI:10.1118/1.1591194] [PMID]
2. Zhang P, Happersett L, Hunt M, et al. (2010) Volumetric modulated arc therapy: planning and evaluation for prostate cancer cases. Int J Radiat Oncol Biol Phys, 76(5): 1456-1462. [DOI:10.1016/j.ijrobp.2009.03.033] [PMID]
3. Du W, Cho SH, Zhang X, et al. (2014) Quantification of beam complexity in intensity-modulated radiation therapy treatment plans. Med Phys, 41(2): 021716. [DOI:10.1118/1.4861821] [PMID]
4. Park JM, Park SY, Kim H (2015) Modulation index for VMAT considering both mechanical and dose calculation uncertainties. Phys Med Biol, 60(18): 7101-7125. [DOI:10.1088/0031-9155/60/18/7101] [PMID]
5. Fredh A, Scherman JB, Fog LS, Munck af Rosenschöld P (2013) Patient QA systems for rotational radiation therapy: a comparative experimental study with intentional errors. Med Phys, 40(3): 031716. [DOI:10.1118/1.4788645] [PMID]
6. Otto K (2008) Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys, 35(1): 310-317. [DOI:10.1118/1.2818738] [PMID]
7. Yassin A, Elshahat KM, Attlah EM, et al. (2021) Dose verification and plan conformity with three different dosimeters for intensity-modulated radiation therapy plans. Int J Radiat Res, 19(3): 703-710. [DOI:10.52547/ijrr.19.3.703]
8. Hussein M, Adams EJ, Jordan TJ, et al. (2013) A critical evaluation of the PTW 2D-ARRAY seven29 and OCTAVIUS II phantom for IMRT and VMAT verification. J Appl Clin Med Phys, 14(6): 274-292. [DOI:10.1120/jacmp.v14i6.4460] [PMID] []
9. Feygelman V, Zhang G, Stevens C, Nelms BE (2011) Evaluation of a new VMAT QA device, or the "X" and "O" array geometries. J Appl Clin Med Phys, 12(2): 3346. [DOI:10.1120/jacmp.v12i2.3346] [PMID] []
10. Masi L, Casamassima F, Doro R, Francescon P (2011) Quality assurance of volumetric modulated arc therapy: evaluation and comparison of different dosimetric systems. Med Phys, 38(2): 612-621. [DOI:10.1118/1.3533900] [PMID]
11. Stelljes TS, Harmeyer A, Reuter J, Looe HK, Chofor N (2015) Dosimetric characteristics of the novel 2D ionization chamber array OCTAVIUS Detector 1500. Med Phys, 42(4): 1528-1537. [DOI:10.1118/1.4914151] [PMID]
12. Sun Nuclear Corporation (n.d.) ArcCHECK reference guide. Sun Nuclear Corp., Melbourne, FL, USA.
13. Kinsella P, Shields L, McCavana P, McClean B, Langan B (2016) Determination of MLC model parameters for Monaco using commercial diode arrays. J Appl Clin Med Phys, 17(4): 37-47. [DOI:10.1120/jacmp.v17i4.6190] [PMID] []
14. Pan Y, Yang R, Zhang S, et al. (2019) National survey of patient specific IMRT quality assurance in China. Radiat Oncol, 14(1): 69. [DOI:10.1186/s13014-019-1273-5] [PMID] []
15. Miften M, Olch A, Mihailidis D, et al. (2018) Tolerance limits and methodologies for IMRT measurement-based verification QA: recommendations of AAPM Task Group No. 218. Med Phys, 45(4): e53-e83. [DOI:10.1002/mp.12810] [PMID]
16. Low DA, Harms WB, Mutic S, Purdy JA (1998) A technique for the quantitative evaluation of dose distributions. Med Phys, 25(5): 656-661. [DOI:10.1118/1.598248] [PMID]
17. Park JM, Kim JI, Park SY, et al. (2018) Reliability of the gamma index analysis as a verification method of volumetric modulated arc therapy plans. Radiat Oncol, 13(1): 175. [DOI:10.1186/s13014-018-1123-x] [PMID] []
18. Poppe B, Blechschmidt A, Djouguela A, et al. (2006) Two-dimensional ionization chamber arrays for IMRT plan verification. Med Phys, 33(4): 1005-1015. [DOI:10.1118/1.2179167] [PMID]
19. Heilemann G, Poppe B, Laub W (2013) On the sensitivity of common gamma index evaluation methods to MLC misalignments in Rapidarc quality assurance. Med Phys, 40(3): 031702. [DOI:10.1118/1.4789580] [PMID]
20. Mu G, Ludlum E, Xia P (2008) Impact of MLC leaf position errors on simple and complex IMRT plans for head and neck cancer. Phys Med Biol, 53(1): 77-88. [DOI:10.1088/0031-9155/53/1/005] [PMID]
21. Chun M, Kim JI, Oh DH, et al. (2020) Effect of dose grid resolution on the results of patientspecific quality assurance for intensity-modulated radiation therapy and volumetric modulated arc therapy. Int J Radiat Res, 18(3): 521-530.
22. Yasui K, Saito Y, Ogawa S, Hayashi N (2021) Dosimetric characterization of a new two-dimensional diode detector array used for stereotactic radiosurgery quality assurance. Int J Radiat Res, 19(2): 281-289. [DOI:10.52547/ijrr.19.2.5]
23. Kim JI, Choi CH, Wu HG, et al. (2016) Correlation analysis between 2D and quasi-3D gamma evaluations for both intensity-modulated radiation therapy and volumetric modulated arc therapy. Oncotarget, 8(3): 5449-5459. [DOI:10.18632/oncotarget.12279] [PMID] []
24. Persoon LCGG, Podesta M, van Elmpt WJC, et al. (2011) A fast three-dimensional gamma evaluation using a GPU utilizing texture memory for on-the-fly interpolations. Med Phys, 38(7): 4032-4035. [DOI:10.1118/1.3595114] [PMID]
25. Kunii Y, Tanabe Y, Nakamoto A, Nishioka K (2022) Statistical analysis of correlation of gamma passing results for two quality assurance phantoms used for patient-specific quality assurance in volumetric modulated arc radiotherapy. Med Dosim, 47(4): 329-333. [DOI:10.1016/j.meddos.2022.06.003] [PMID]
26. Esmaili G, Mahdavi SR, Nikoofar AR, et al. (2018) Dosimetric verification of pre-treatment intensity modulated radiation therapy in the commissioning process. Int J Radiat Res, 16(4): 493-497.
27. Neilson C, Klein M, Barnett R, Yartsev S (2013) Delivery quality assurance with ArcCHECK. Med Dosim, 38(1): 77-80. [DOI:10.1016/j.meddos.2012.07.004] [PMID]
28. Nelms BE, Zhen H, Tomé WA (2011) Per‐beam, planar IMRT QA passing rates do not predict clinically relevant patient dose errors. Med Phys, 38(2): 1037-1044. [DOI:10.1118/1.3544657] [PMID] []
29. Valdes G, Scheuermann R, Hung C, Olszanski A, et al. (2016) A mathematical framework for virtual IMRT QA using machine learning. Med Phys, 43(7): 4323-4334. [DOI:10.1118/1.4953835] [PMID]
30. Tanabe Y, Ishida T, Eto H, et al. (2021) Patient-specific radiotherapy quality assurance for estimating actual treatment dose. Med Dosim, 46(1): e5-e10. [DOI:10.1016/j.meddos.2020.08.003] [PMID]
31. Osman AFI, Maalej NM, Jayesh K (2020) Prediction of the individual multileaf collimator positional deviations during dynamic IMRT delivery priori with artificial neural network. Med Phys, 47(4): 1421-1430. [DOI:10.1002/mp.14014] [PMID]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kunii Y, Tanabe Y, Higashi A, Nakamoto A, Nishioka K. Effects of high-resolution measurements between different multi-row detectors on volumetric modulated arc therapy patient-specific quality assurance . Int J Radiat Res 2023; 21 (3) :413-419
URL: http://ijrr.com/article-1-4849-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 21, Issue 3 (6-2023) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 48 queries by YEKTAWEB 4660