[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 21, Issue 3 (6-2023) ::
Int J Radiat Res 2023, 21(3): 585-592 Back to browse issues page
A systematic review and meta-analysis of clinical trials of thyroids hormone using ultrasound based datasets
J. Niu , H. Chen , J. Peng , H. Yuan
Department of Department of Ultrasound, First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Kunming City, Yunnan Province, 650032, China , dryuanh@sina.com
Abstract:   (897 Views)
Background: Thyroid nodules account for 10-15 % of thyroid cancers or malignancies and ultrasound (US) is the most accurate technique for evaluating thyroid nodules.  Ultrasound-based datasets aid in detecting malignancy risk and avoiding Fine Needle Aspiration (FNA) biopsy. There are several guidelines for determining thyroid nodules, and ACR-TIRADS (American College of Radiology Thyroid Imaging Reporting and Data Systems) is the most accurate and widely used. However, very few or no studies have compared various grades of ACR-TIRADS based on benign and malignant nodules. Therefore, this study aimed to investigate the predictive risk of malignant cancer in thyroid nodules obtained from an ultrasound dataset based on the ACR-TIRADS classification. Materials and Methods: PubMed, Medline, EMBASE (Excerpta Medica dataBASE), Google Scholar, Cochrane Library, and Web of Science were searched for articles published between Jan 2018 to 30 June, 2022, and ultrasound-based datasets were obtained for benign and malignant thyroid nodules based on ACR-TIRADS. Results: Ten articles were included with 12723 total cases of thyroid ultrasound dataset for benign and malignant thyroid nodule classification. The total number of benign was 6641 and the total number of malignant thyroid nodules was 6082 respectively (95 % CI=1.14, 0.75-1.74) with P=0.53. The number of TR4 and TR5 malignancies were 1397 and 3733 respectively (95 % CI=0.42, 0.22-0.83) with P=0.01. Conclusion: The TR4 and TR5 grading of the ACR-TIRADS represents an excellent stratification system for classifying thyroid lesions thereby avoiding biopsies performed on benign nodules.
Keywords: Thyroids hormone, ultrasound, benign, malignant.
Full-Text [PDF 1103 kb]   (524 Downloads)    
Type of Study: Review article | Subject: Radiation Biology
References
1. 1. Beynon ME and Pinneri K (2016) An overview of the thyroid gland and thyroid-related deaths for the forensic pathologist. Acad Forensic Pathol, 6(2): 217-236. [DOI:10.23907/2016.024] [PMID] []
2. Poppe K (2021) MANAGEMENT OF ENDOCRINE DISEASE: Thyroid and female infertility: more questions than answers?! Eur J Endocrinol, 184(4): R123-R135. [DOI:10.1530/EJE-20-1284] [PMID]
3. Ospina NS and Papaleontiou M (2021) Thyroid nodule evaluation and management in older adults: A review of practical considerations for clinical endocrinologists. Endocr Pract, 27(3): 261-268. [DOI:10.1016/j.eprac.2021.02.003] [PMID] []
4. Ren B and Zhu Y (2022) A new perspective on thyroid hormones: Crosstalk with reproductive hormones in females. Int J Mol Sci, 23(5): 2708. [DOI:10.3390/ijms23052708] [PMID] []
5. Mescher AL (2010) Junqueira's basic histology text & atlas. 12th ed. New York: McGraw-Hill Medical; Chapter 20, Endocrine glands, p. 348-70.
6. Maitra A (2010) Thyroid gland. In: chmidt W., Gruliow R., editors. Robbins and Cotran pathologic basis of disease. 8th ed. Philadelphia: Saunders Elsevier; p. 1107-30.
7. Ozgüner G and Sulak O (2014) Arterial supply to the thyroid gland and the relationship between the recurrent laryngeal nerve and the inferior thyroid artery in human fetal cadavers. Clin Anat, 27(8): 1185-92. [DOI:10.1002/ca.22448] [PMID]
8. Costanzo LS (2010) Thyroid Hormones. In: Cicalese B., editor. Physiology. 4th ed. Philadelphia: Saunders Elsevier; p. 401-9.
9. Yuan H, Wang D, Niu J, Xing Y (2010) Application value of contrast-enhanced ultrasonography in radiofrequency minimally invasive treatment of liver cancer. Chin J Clin Med Imag, 21(09): 562-571.
10. Pooprasert P, Hansell J, Young-Zvandasara T, Muhtaseb M (2021) Can Applying a Risk Stratification System, Preoperatively, Reduce Intraoperative Complications during Phacoemulsification?. Curr Eye Res, 46(3):s318-323. [DOI:10.1080/02713683.2020.1801759] [PMID]
11. Dom Dera J (2019) Risk stratification: A two-step process for identifying your sickest patients. Fam Pract Manag, 26(3): 21-26.
12. Yuan H, Dragon F, B Rui, Niu J (2010) Application of contrast-enhanced ultrasonography in the differential diagnosis of liver tumors and local fat loss in the liver. Chin J Prac Diag Ther, 24(02): 345-351.
13. Lee YH, Baek JH, Jung SL (2015) Ultrasound-guided fine needle aspiration of thyroid nodules: a consensus statement by the korean society of thyroid radiology. Korean J Radiol, 16(2): 391-401. [DOI:10.3348/kjr.2015.16.2.391] [PMID] []
14. Wei D, Yuan X, Yang T (2013) Sudden unexpected death due to Graves' disease during physical altercation. J Forensic Sci, 58(5): 1374-7. [DOI:10.1111/1556-4029.12247] [PMID]
15. Yuan H, Niu J, Zhang Z, et al. (2015) Evaluation of three-dimensional contrast-enhanced ultrasonography in radiofrequency treatment of liver cancer. Chin J Ultrasound Med, 31(06): 382-387.
16. Trimboli P, Castellana M, PiccardoA, et al. (2021) The ultrasound risk stratification systems for thyroid nodule have been evaluated against papillary carcinoma. A meta-analysis. Rev Endocr Metab Disord, 22(2): 453-460. [DOI:10.1007/s11154-020-09592-3] [PMID] []
17. Papini E, Guglielmi R, Bizzarri G (2007) Treatment of benign cold thyroid nodules: a randomized clinical trial of percutaneous laser ablation versus levothyroxine therapy or follow-up. Thyroid, 17: 229 -235. [DOI:10.1089/thy.2006.0204] [PMID]
18. Kwak JY, Han KH, Yoon JH, et al. (2011) Thyroid imaging reporting and data system for US features of nodules: a step in establishing better stratification of cancer risk. Radiology, 260: 892-899. [DOI:10.1148/radiol.11110206] [PMID]
19. Wells SA Jr, Asa SL, Dralle H, et al. (2015) American thyroid association guidelines task force on medullary thyroid carcinoma. Revised American Thyroid association guidelines for the management of medullary thyroid carcinoma. Thyroid, 25(6): 567-610. [DOI:10.1089/thy.2014.0335] [PMID] []
20. Shin JH, Baek JH, Chung J, et al. (2016) Korean society of thyroid radiology (KSThR) and Korean society of radiology. (2016) Ultrasonography diagnosis and imaging-based management of thyroid nodules: Revised Korean society of thyroid radiology consensus statement and recommendations. Korean J Radiol, 17(3): 370-95. [DOI:10.3348/kjr.2016.17.3.370] [PMID] []
21. Russ G, Bonnema SJ, Erdogan MF, et al. (2017) European thyroid association guidelines for ultrasound malignancy risk stratification of thyroid nodules in adults: The EU-TIRADS. Eur Thyroid J, 6(5): 225-237. [DOI:10.1159/000478927] [PMID] []
22. Zhou J, Yin L, Wei X, et al. (2020) Superficial organ and vascular ultrasound group of the society of ultrasound in medicine of the Chinese medical association
23. Chinese artificial intelligence alliance for thyroid and breast ultrasound. 2020 Chinese guidelines for ultrasound malignancy risk stratification of thyroid nodules: the C-TIRADS. Endocrine, 70(2): 256-279.
24. Tessler FN, Middleton WD, Grant EG, et al. (2017) ACR thyroid imaging, reporting and data system (TI-RADS): White Paper of the ACR TI-RADS Committee. J Am Coll Radiol. 14(5):587-595. [DOI:10.1016/j.jacr.2017.01.046] [PMID]
25. Yuan H, Niu J, Chen H (2015) Diagnostic value of real-time ultrasound elastography in parotid mass. J Prac Med, 31(08): 652-659.
26. Flam JO, Mehta V, Smith RV (2021) Which ultrasound classification system is best at reducing unnecessary thyroid nodule biopsies? Laryngoscope, 131(8): 1695-1696. [DOI:10.1002/lary.29248] [PMID]
27. Burgos N, Ospina NS, Sipos JA (2022) The future of thyroid nodule risk stratification. Endocrinol Metab Clin North Am, 51(2): 305-321. [DOI:10.1016/j.ecl.2021.12.002] [PMID] []
28. Grant EG, Tessler FN, Hoang JK (2015) Thyroid ultrasound reporting lexicon: White paper of the ACR thyroid imaging, reporting and data system (TIRADS) committee. J Am Coll Radiol, 12(12 Pt A): 1272-1279. [DOI:10.1016/j.jacr.2015.07.011] [PMID]
29. Yuan H, Chen H, Yellow M, Wen W (2018) Evaluation of carotid plaque stability in patients with cerebral infarction by ultra-microvascular imaging. China Med Dev Info, 24(23): 412-418.
30. Suh CH, Baek JH, Park C, et al. (2017) The role of core needle biopsy for thyroid nodules with initially indeterminate results on previous fine-needle aspiration: A systematic review and meta-analysis. AJNR Am J Neuroradiol, 38(7): 1421-1426. [DOI:10.3174/ajnr.A5182] [PMID] []
31. Choi JJ, Carlisle RC, Coviello C, et al. (2014) Non-invasive and real-time passive acoustic mapping of ultrasound-mediated drug delivery. Phys Med Biol, 59(17): 4861-77. [DOI:10.1088/0031-9155/59/17/4861] [PMID]
32. Gao L, Xi X, Jiang Y, et al. (2019) Comparison among TIRADS (ACR TI-RADS and KWAK- TI-RADS) and 2015 ATA Guidelines in the diagnostic efficiency of thyroid nodules. Endocrine, 64(1): 90-96. [DOI:10.1007/s12020-019-01843-x] [PMID]
33. Castellana M, Castellana C, Treglia G (2020) Performance of Five Ultrasound Risk Stratification Systems in Selecting Thyroid Nodules for FNA. J Clin Endocrinol Meta, 105(5): dgz170. [DOI:10.1210/clinem/dgz170] [PMID]
34. Seminati D, Capitoli G, Leni D (2021) Use of diagnostic criteria from ACR and EU-TIRADS Systems to Improve the Performance of Cytology in Thyroid Nodule Triage. Cancers (Basel), 13(21): 5439. [DOI:10.3390/cancers13215439] [PMID] []
35. Wang D, Du LY, Sun JW, et al. (2020) Evaluation of thyroid nodules with coexistent Hashimoto's thyroiditis according to various ultrasound-based risk stratification systems: A retrospective research. Eur J Radiol, 131: 109059. [DOI:10.1016/j.ejrad.2020.109059] [PMID]
36. Qi Q, Zhou A, Guo S, et al. (2021) Explore the diagnostic efficiency of chinese thyroid imaging reporting and data systems by comparing with the other four systems (ACR TI-RADS, Kwak-TIRADS, KSThR-TIRADS, and EUTIRADS): A single-center study. Front Endocrinol, 12: 763897. [DOI:10.3389/fendo.2021.763897] [PMID] []
37. Schenke S, Klett R, Seifert P, Kreissl MC, et al. (2020) Diagnostic performance of different thyroid imaging reporting and data systems (Kwak-TIRADS, EU-TIRADS and ACR TI-RADS) for risk stratification of small thyroid nodules (≤10 mm). J Clin Med, 9(1): 236. [DOI:10.3390/jcm9010236] [PMID] []
38. McClean S, Omakobia E, England RJA (2021) Comparing ultrasound assessment of thyroid nodules using BTA U classification and ACR TIRADS measured against histopathological diagnosis. Clin Otolaryngol, 46(6): 1286-1289. [DOI:10.1111/coa.13831] [PMID]
39. Darota SK, Wysocka-Konieczna K, Klencki M, Popowicz B (2020) Diagnostic value of six thyroid imaging reporting and data systems (TIRADS) in Cytologically Equivocal Thyroid Nodules. J Clin Med, 9(7): 2281. [DOI:10.3390/jcm9072281] [PMID] []
40. Shen Y, Liu M, He J, et al. (2019) Comparison of Different Risk-Stratification Systems for the Diagnosis of Benign and Malignant Thyroid Nodules. Front Oncol, 9: 378. [DOI:10.3389/fonc.2019.00378] [PMID] []
41. Ruan JL, Yang HY, Liu RB, et al. (2019) Fine needle aspiration biopsy indications for thyroid nodules: compare a point-based risk stratification system with a pattern-based risk stratification system. Eur Radiol, 29(9): 4871-4878. [DOI:10.1007/s00330-018-5992-z] [PMID]
42. Xu T, Wu Y, Wu RX, et al. (2019) Validation and comparison of three newly-released Thyroid Imaging Reporting and Data Systems for cancer risk determination. Endocrine, 64(2): 299-307. [DOI:10.1007/s12020-018-1817-8] [PMID]
43. Zhang WB, Xu HX, Zhang YF, et al. (2020) Comparisons of ACR TI-RADS, ATA guidelines, Kwak TI-RADS, and KTA/KSThR guidelines in malignancy risk stratification of thyroid nodules. Clin Hemorheol Microcirc, 75(2): 219-232. [DOI:10.3233/CH-190778] [PMID]
44. Tappouni RR, Itri JN, McQueen TS, Lalwani N, Ou JJ (2019) ACR TI-RADS: Pitfalls, Solutions, and Future Directions. Radiographics, 39(7): 2040-2052. [DOI:10.1148/rg.2019190026] [PMID]
45. Wildman-Tobriner B, Buda M, Hoang JK, et al. (2019) Using artificial intelligence to revise ACR TI-RADS risk stratification of thyroid nodules: Diagnostic accuracy and utility. Radiology, 292(1): 112-119. [DOI:10.1148/radiol.2019182128] [PMID]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Niu J, Chen H, Peng J, Yuan H. A systematic review and meta-analysis of clinical trials of thyroids hormone using ultrasound based datasets. Int J Radiat Res 2023; 21 (3) :585-592
URL: http://ijrr.com/article-1-4920-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 21, Issue 3 (6-2023) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 50 queries by YEKTAWEB 4660