[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
IJRR Information::
For Authors::
For Reviewers::
News & Events::
Web Mail::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
Hard Copy 2322-3243
Online 2345-4229
Online Submission
Now you can send your articles to IJRR office using the article submission system.



:: Volume 21, Issue 4 (10-2023) ::
Int J Radiat Res 2023, 21(4): 699-706 Back to browse issues page
Comprehensive application of bioinformatics analysis and experimental exploration identifying miR-34a/CDK6 axis as the key regulators for radiation-induced lung injury progression
W. Wu , X. Zhou , L. Xiao , P. Bao , X. Liu
Department of Respiratory and Critical Care Medicine,The Eighth Medical Center of PLA General Hospital, Beijing, China , bao03@163.com
Abstract:   (516 Views)
Background: The pathogenesis of radiation-induced lung injury (RILI) remains elusive. In this study, we aimed to elucidate the mechanism underlying RILI progression by employing a comprehensive approach, integrating bioinformatics analysis and experimental validation. Materials and Methods: Raw transcriptome sequencing data from two Gene Expression Omnibus (GEO) datasets, GSE202586 and GSE14431, were downloaded and overlapping genes were identified. Differential expressions of microRNAs (miRNAs) were analyzed using GEO2R software on the GSE202586 dataset. The miRDB database and miRWalk database were utilized to identify miRNA targets. Specific miRNA inhibitors or protein siRNA were administered to RILI mouse models for experimental confirmation. Results: Ten genes were consistently upregulated in the RILI groups across both datasets. A series of miRNAs were dysregulated in the RILI group, with miR-34a exhibiting the largest difference. By integrating target exploration and protein-protein interaction (PPI) analysis, we determined that the miR-34a/CDK6 axis may be the key regulator of RILI progression. Notably, miR-34a inhibitor treatment significantly alleviated alveolitis in RILI mice, and this effect was substantially reversed by CDK6 siRNA. Conclusion: Targeting the miR-34a/CDK6 axis presents a potential therapeutic strategy for RILI.
Keywords: GEO dataset, miRNA, protein-protein interaction, RILI.
Full-Text [PDF 1509 kb]   (318 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
1. 1. Arroyo-Hernández M, Maldonado F, Lozano-Ruiz F, et al. (2021) Radiation-induced lung injury: current evidence. BMC Pulm Med, 21(1): 9. [DOI:10.1186/s12890-020-01376-4] [PMID] []
2. Roy S, Salerno KE, Citrin DE (2021) Biology of Radiation-Induced Lung Injury. Semin Radiat Oncol, 31(2):155-61. [DOI:10.1016/j.semradonc.2020.11.006] [PMID] []
3. Hanania AN, Mainwaring W, Ghebre YT, et al. (2019) Radiation-Induced Lung Injury: Assessment and Management. Chest, 156(1): 150-62. [DOI:10.1016/j.chest.2019.03.033] [PMID] []
4. Li X, Chen J, Yuan S, et al. (2022) Activation of the P62-Keap1-NRF2 pathway protects against Ferroptosis in radiation-induced lung injury. Oxid Med Cell Longev, 8973509. [DOI:10.21203/rs.3.rs-1032461/v1]
5. Bao P, Zhao W, Mou M, Liu X (2020) MicroRNA-21 mediates bone marrow mesenchymal stem cells protection of radiation-induced lung injury during the acute phase by regulating polarization of alveolar macrophages. Transl Cancer Res, 9(1): 231-9. [DOI:10.21037/tcr.2019.12.77] [PMID] []
6. Vaneechoutte D and Vandepoele K (2019) Curse: building expression atlases and co-expression networks from public RNA-Seq data. Bioinformatics, 35(16): 2880-81. [DOI:10.1093/bioinformatics/bty1052] [PMID]
7. Ma L, Ye Y, Lu H, et al. (2022) A study on the radiosensitivity of radiation-induced lung injury at the acute phase based on single-cell transcriptomics. Front Immunol, 13: 941976. [DOI:10.3389/fimmu.2022.941976] [PMID] []
8. Li H, Fu X, Guo H, et al. (2022) Sevoflurane reverses cisplatin resistance in neuroblastoma cells through the linc00473/miR-490-5p/AKT1 axis. Saudi Med J, 43(11): 1209-16. [DOI:10.15537/smj.2022.43.11.20220549] [PMID]
9. Li Y, Zou L, Chu L, et al. (2021) Identification and Integrated Analysis of circRNA and miRNA of Radiation-Induced Lung Injury in a Mouse Model. J Inflamm Res, 14: 4421-31. [DOI:10.2147/JIR.S322736] [PMID] []
10. Zhou Y, Zhou B, Pache L, et al. (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun, 10(1): 1523. [DOI:10.1038/s41467-019-09234-6] [PMID] []
11. Szklarczyk D, Gable AL, Nastou KC, et al. (2021) The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res, 49(D1): D605-12. [DOI:10.1093/nar/gkaa1074] [PMID] []
12. Chen Y and Wang X (2020) miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res, 48(D1): D127-31. [DOI:10.1093/nar/gkz757] [PMID] []
13. Sticht C, De La Torre C, Parveen A, Gretz N (2018) miRWalk: An online resource for prediction of microRNA binding sites. PLoS One, 13(10): e0206239. [DOI:10.1371/journal.pone.0206239] [PMID] []
14. Sun Y, Du YJ, Zhao H, et al. (2016) Protective effects of ulinastatin and methylprednisolone against radiation-induced lung injury in mice. J Radiat Res, 57(5): 505-511. [DOI:10.1093/jrr/rrw036] [PMID] []
15. Jiang Y, You F, Zhu J, et al. (2019) Cryptotanshinone Ameliorates Radiation-Induced Lung Injury in Rats. Evid Based Complement Alternat Med, 2019: 1908416. [DOI:10.1155/2019/1908416] [PMID] []
16. Chen S, Ding R, Hu Z, et al. (2020) MicroRNA-34a Inhibition Alleviates Lung Injury in Cecal Ligation and Puncture Induced Septic Mice. Front Immunol, 11: 1829. [DOI:10.3389/fimmu.2020.01829] [PMID] []
17. Qi Y, Zhao A, Yang P, et al. (2020) miR-34a-5p Attenuates EMT through targeting SMAD4 in silica-induced pulmonary fibrosis. J Cell Mol Med, 24(20): 12219-24. [DOI:10.1111/jcmm.15853] [PMID] []
18. Sun F, Fu H, Liu Q, et al. (2008) Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Lett, 582(10): 1564-8. [DOI:10.1016/j.febslet.2008.03.057] [PMID]
19. Zhang Z, Zhou J, Verma V, et al. (2021) Crossed Pathways for Radiation-Induced and Immunotherapy-Related Lung Injury. Front Immunol, 12: 774807. [DOI:10.3389/fimmu.2021.774807] [PMID] []
20. Türkkan G, Willems Y, Hendriks LEL, et al. (2021) Idiopathic pulmonary fibrosis: Current knowledge, future perspectives and its importance in radiation oncology. Radiother Oncol, 155: 269-77. [DOI:10.1016/j.radonc.2020.11.020] [PMID]
21. Lei X, Du L, Yu W, et al. (2021) GSTP1 as a novel target in radiation induced lung injury. J Transl Med, 19(1): 297. [DOI:10.1186/s12967-021-02978-0] [PMID] []
22. Li L, Wu D, Deng S, et al. (2022) NVP-AUY922 alleviates radiation-induced lung injury via inhibition of autophagy-dependent ferroptosis. Cell Death Discov, 8(1): 86. [DOI:10.1038/s41420-022-00887-9] [PMID] []
23. Zoabi Y and Shomron N (2021) Processing and analysis of RNA-seq data from public resources. Methods Mol Biol, 2243: 81-94. [DOI:10.1007/978-1-0716-1103-6_4] [PMID]
24. Wu W and Zheng L (2022) Comprehensive analysis identifies COL1A1, COL3A1, and POSTN as key genes associated with brain metastasis in patients with breast cancer. Evid Based Complement Alternat Med, 2022: 7812218. [DOI:10.1155/2022/7812218] [PMID] []
25. Zhao G, Luo X, Han X, Liu Z (2020) Combining bioinformatics and biological detection to identify novel biomarkers for diagnosis and prognosis of pulmonary tuberculosis. Saudi Med J, 41(4): 351-60. [DOI:10.15537/smj.2020.4.24989] [PMID] []
26. Wang D, Lin Y, Xu F, et al. (2022) SIRPα maintains macrophage homeostasis by interacting with PTK2B kinase in Mycobacterium tuberculosis infection and through autophagy and necroptosis. EBioMedicine, 85: 104278. [DOI:10.1016/j.ebiom.2022.104278] [PMID] []
27. Zhu H, Lin Y, Liu Y (2021) miR-34a increases inflammation and oxidative stress levels in patients with necrotizing enterocolitis by downregulating SIRT1 expression. Mol Med Rep, 24(3): 664. [DOI:10.3892/mmr.2021.12303] [PMID]
28. Birnhuber A, Egemnazarov B, Biasin V, et al. (2020) CDK4/6 inhibition enhances pulmonary inflammatory infiltration in bleomycin-induced lung fibrosis. Respir Res, 21(1): 167. [DOI:10.1186/s12931-020-01433-w] [PMID] []
29. Luyckx E, Van Leuven W, Andre D, et al. (2018) Loss of neuroglobin expression alters Cdkn1a/Cdk6-expression resulting in increased proliferation of neural stem cells. Stem Cells Dev, 27(6): 378-390. [DOI:10.1089/scd.2017.0097] [PMID]
30. Iwagami Y, Zou J, Zhang H, et al. (2018) Alcohol-mediated miR-34a modulates hepatocyte growth and apoptosis. J Cell Mol Med, 22(8): 3987-3995. [DOI:10.1111/jcmm.13681] [PMID] []
31. Portman N, Milioli HH, Alexandrou S, et al. (2020) MDM2 inhibition in combination with endocrine therapy and CDK4/6 inhibition for the treatment of ER-positive breast cancer. Breast Cancer Res, 22(1): 87. https://doi.org/10.1101/2020.06.09.140921 [DOI:10.1186/s13058-020-01318-2]
Send email to the article author

Add your comments about this article
Your username or Email:


XML     Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Wu W, Zhou X, Xiao L, Bao P, Liu X. Comprehensive application of bioinformatics analysis and experimental exploration identifying miR-34a/CDK6 axis as the key regulators for radiation-induced lung injury progression. Int J Radiat Res 2023; 21 (4) :699-706
URL: http://ijrr.com/article-1-5039-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 21, Issue 4 (10-2023) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 50 queries by YEKTAWEB 4642