[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 21, Issue 4 (10-2023) ::
Int J Radiat Res 2023, 21(4): 745-750 Back to browse issues page
Platelet-rich plasma alleviates skin photoaging and oxidative stress in rats by regulating autophagy and inhibiting the NLRP 3 inflammasome pathway
Y. Zeng , D. Zhang , H. Lai , S. Liu
Department of dermatology, Meizhou people's Hospital, Meizhou, 514000, China , dong9894@126.com
Abstract:   (1217 Views)
Background: Background: Ultraviolet radiation is the main cause of photoaging, which can induce oxidative stress and cellular senescence in the skin. It has been demonstrated that platelet-rich plasma (PRP) can significantly improve skin photoaging. However, the mechanism by which PRP improves photoaging remains unclear. Materials and Methods: In this study, UVA-induced SD rats were used as a skin photoaging model and administered with PRP treatment, aiming to elucidate the potential mechanism of its protection against photoaging. Results: They showed that PRP injection on the back of rats improved skin photoaging, oxidative stress, and inflammation, and inhibited skin cell apoptosis. In addition, RPR activated autophagy to inhibit NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome signaling pathway-related proteins. Conclusion: Our experimental results suggest that PRP plays an anti-UVA photoaging role by inhibiting autophagy and NLRP3 signaling pathways. Our study is the first to suggest that PRP anti-skin photoaging is associated with autophagy and NLRP3, providing a potential therapeutic approach for skin photoaging.
Keywords: Platelet-rich plasma, skin aging, autophagy, NLR proteins.
Full-Text [PDF 829 kb]   (674 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. Ahmed ME, Iyer S, Thangavel R, Kempuraj D, et al. (2017) Co-localization of glia maturation factor with NLRP3 inflammasome and autophagosome markers in human alzheimer's disease brain. J Alzheimers Dis, 60(3): 1143-60. [DOI:10.3233/JAD-170634] [PMID] []
2. Wilson SR, Madronich S, Longstreth JD, Solomon KR (2019) Interactive effects of changing stratospheric ozone and climate on tropospheric composition and air quality, and the consequences for human and ecosystem health. Photochem Photobiol Sci, 18(3): 775-803. [DOI:10.1039/c8pp90064g] [PMID]
3. Zhang M, Wang L, Zhong D (2017) Photolyase: dynamics and mechanisms of repair of sun-induced DNA damage. Photochem Photobiol, 93(1): 78-92. [DOI:10.1111/php.12695] [PMID] []
4. Cadet J and Douki T (2018) Formation of UV-induced DNA damage contributing to skin cancer development. Photochem Photobiol Sci, 17(12): 1816-41. [DOI:10.1039/c7pp00395a] [PMID]
5. Metral E, Bechetoille N, Demarne F, et al. (2018) Keratinocyte stem cells are more resistant to UVA radiation than their direct progeny. PLoS One, 13(9): e0203863. [DOI:10.1371/journal.pone.0203863] [PMID] []
6. Premi S, Wallisch S, Mano CM, Weiner AB, et al. (2015) Photochemistry. Chemiexcitation of melanin derivatives induces DNA photoproducts long after UV exposure. Science, 347(6224): 842-7. [DOI:10.1126/science.1256022] [PMID] []
7. Singh S, Singh MK, Das P (2018) Visual detection of cyclobutane pyrimidine dimer DNA damage lesions by Hg2+ and carbon dots. Anal Chim Acta, 1016: 49-58. [DOI:10.1016/j.aca.2018.02.029] [PMID]
8. Lim G-E, Park JE, Cho YH, et al. (2020) Alpha-neoendorphin can reduce UVB-induced skin photoaging by activating cellular autophagy. Arch Biochem Biophys, 689: 108437. [DOI:10.1016/j.abb.2020.108437] [PMID]
9. Bai G-L, Wang P, Huang X, et al. (2021) Rapamycin Protects Skin Fibroblasts From UVA-Induced Photoaging by Inhibition of p53 and Phosphorylated HSP27. Front Cell Dev Biol, 9: 633331. [DOI:10.3389/fcell.2021.633331] [PMID] []
10. Chen Q, Zhang H, Yang Y, et al. (2022) Metformin Attenuates UVA-induced skin photoaging by suppressing mitophagy and the PI3K/AKT/mTOR pathway. Int J Mol Sci, 23(13). [DOI:10.3390/ijms23136960] [PMID] []
11. Lynch MD and Bashir S (2016) Applications of platelet-rich plasma in dermatology: A critical appraisal of the literature. J Dermatolog Treat, 27(3): 285-9. [DOI:10.3109/09546634.2015.1094178] [PMID]
12. Mehryan P, Zartab H, Rajabi A, et al. (2014) Assessment of efficacy of platelet-rich plasma (PRP) on infraorbital dark circles and crow's feet wrinkles. J Cosmet Dermatol, 13(1): 72-8. [DOI:10.1111/jocd.12072] [PMID]
13. Du R and Lei T (2020) Effects of autologous platelet-rich plasma injections on facial skin rejuvenation. Exp Ther Med, 19(4): 3024-30. [DOI:10.3892/etm.2020.8531] [PMID] []
14. Maisel-Campbell AL, Ismail A, Reynolds KA, et al. (2020) A systematic review of the safety and effectiveness of platelet-rich plasma (PRP) for skin aging. Arch Dermatol Res, 312(5): 301-15. [DOI:10.1007/s00403-019-01999-6] [PMID]
15. Moussa M, Lajeunesse D, Hilal G, et al. (2017) Platelet rich plasma (PRP) induces chondroprotection via increasing autophagy, anti-inflammatory markers, and decreasing apoptosis in human osteoarthritic cartilage. Exp Cell Res, 352(1): 146-56. [DOI:10.1016/j.yexcr.2017.02.012] [PMID]
16. Zawrotniak M, Bartnicka D, Rapala-Kozik M (2019) UVA and UVB radiation induce the formation of neutrophil extracellular traps by human polymorphonuclear cells. J Photochem Photobiol B, 196: 111511. [DOI:10.1016/j.jphotobiol.2019.111511] [PMID]
17. Mimeault M and Batra SK (2010) Recent advances on skin-resident stem/progenitor cell functions in skin regeneration, aging and cancers and novel anti-aging and cancer therapies. J Cell Mol Med, 14(1-2): 116-34. [DOI:10.1111/j.1582-4934.2009.00885.x] [PMID] []
18. Favas R, Morone J, Martins R, et al. (2022) Cyanobacteria secondary metabolites as biotechnological ingredients in natural anti-aging cosmetics: Potential to overcome hyperpigmentation, loss of skin density and UV radiation-deleterious effects. Mar Drugs, 20(3). [DOI:10.3390/md20030183] [PMID] []
19. Wlaschek M, Tantcheva-Poór I, Naderi L, Ma W, et al. (2001) Solar UV irradiation and dermal photoaging. J Photochem Photobiol B, 63(1-3): 41-51. [DOI:10.1016/S1011-1344(01)00201-9]
20. Nishigori C, Hattori Y, Arima Y, Miyachi Y (2003) Photoaging and oxidative stress. Exp Dermatol, 12 Suppl 2: 18-21. [DOI:10.1034/j.1600-0625.12.s2.3.x] [PMID]
21. Wenk J, Brenneisen P, Meewes C, et al. (2001) UV-induced oxidative stress and photoaging. Curr Probl Dermatol, 29: 83-94. [DOI:10.1159/000060656] [PMID]
22. Panich U, Sittithumcharee G, Rathviboon N, Jirawatnotai S (2016) Ultraviolet Radiation-Induced Skin Aging: The Role of DNA Damage and Oxidative Stress in Epidermal Stem Cell Damage Mediated Skin Aging. Stem Cells Int, 2016: 7370642. [DOI:10.1155/2016/7370642] [PMID] []
23. Itri R, Junqueira HC, Mertins O, Baptista MS (2014) Membrane changes under oxidative stress: the impact of oxidized lipids. Biophys Rev, 6(1): 47-61. [DOI:10.1007/s12551-013-0128-9] [PMID] []
24. Hou H, Li B, Zhao X, et al. (2009) The effect of pacific cod (Gadus macrocephalus) skin gelatin polypeptides on UV radiation-induced skin photoaging in ICR mice. Food Chemistry, 115(3): 945-50. [DOI:10.1016/j.foodchem.2009.01.015]
25. Prasad NR, Ramachandran S, Pugalendi KV, Menon VP (2007) Ferulic acid inhibits UV-B-induced oxidative stress in human lymphocytes. Nutrition Research, 27(9): 559-64. [DOI:10.1016/j.nutres.2007.06.011]
26. Shao B-Z, Xu Z-Q, Han B-Z, et al. (2015) NLRP3 inflammasome and its inhibitors: a review. Front Pharmacol, 6: 262. [DOI:10.3389/fphar.2015.00262] [PMID] []
27. Swanson KV, Deng M, Ting JPY (2019) The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol, 19(8): 477-89. [DOI:10.1038/s41577-019-0165-0] [PMID] []
28. Papandreou M-E and Tavernarakis N (2017) Autophagy and the endo/exosomal pathways in health and disease. Biotechnol J, 12(1). [DOI:10.1002/biot.201600175] [PMID]
29. de Torre-Minguela C, Mesa Del Castillo P, Pelegrín P (2017) The NLRP3 and Pyrin Inflammasomes: Implications in the Pathophysiology of Autoinflammatory Diseases. Front Immunol, 8: 43. [DOI:10.3389/fimmu.2017.00043] [PMID] []
30. Zhang D, He Y, Ye X, et al. (2020) Activation of autophagy inhibits nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome activation and attenuates myocardial ischemia-reperfusion injury in diabetic rats. J Diabetes Investig, 11(5): 1126-36. [DOI:10.1111/jdi.13235] [PMID] []
31. Amano S (2016) Characterization and mechanisms of photoageing-related changes in skin. Damages of basement membrane and dermal structures. Exp Dermatol, 25(3): 14-9. [DOI:10.1111/exd.13085] [PMID]
32. Awad F, Assrawi E, Louvrier C, et al. (2018) Photoaging and skin cancer: Is the inflammasome the missing link? Mech Ageing Dev, 172: 131-7. [DOI:10.1016/j.mad.2018.03.003] [PMID]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zeng Y, Zhang D, Lai H, Liu S. Platelet-rich plasma alleviates skin photoaging and oxidative stress in rats by regulating autophagy and inhibiting the NLRP 3 inflammasome pathway. Int J Radiat Res 2023; 21 (4) :745-750
URL: http://ijrr.com/article-1-5061-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 21, Issue 4 (10-2023) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.04 seconds with 50 queries by YEKTAWEB 4710