[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
IJRR Information::
For Authors::
For Reviewers::
News & Events::
Web Mail::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
Hard Copy 2322-3243
Online 2345-4229
Online Submission
Now you can send your articles to IJRR office using the article submission system.



:: Volume 21, Issue 4 (10-2023) ::
Int J Radiat Res 2023, 21(4): 805-813 Back to browse issues page
DIRAS2 promotes radiation resistance in renal cell carcinoma via autophagy induction and MKK4-JNK1 pathway activation
C.F. Cai , Y. He , D. Yue , Z.H Wang , N. Guo , J. Tian
Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250014, Shandong, China , 198862000666@email.sdu.edu.cn
Abstract:   (454 Views)
Background: To investigate the effect of DIRAS2 on the response to ionizing radiation (IR) and the related potential molecular mechanism in human ccRCC cells. Materials and Methods: In this paper, the expression levels of DIRAS2 in human ccRCC and paired normal tissues were obtained from the Oncomine platform and The Cancer Genome Atlas (TCGA) database, which was further validated by immunohistochemistry. DIRAS2-overexpression cell lines were constructed using a lentivirus-mediated gene expression system. A clonogenic assay was performed to evaluate cell radiation resistance. The effect of DIRAS2 on autophagy was determined by immunoblotting and immunofluorescence analysis. The expression of DIRAS2 and related signalling molecules was evaluated by immunoblotting. Results: Here, we found that the expression of DIRAS2 was upregulated in human ccRCC. Overexpression of DIRAS2 promoted radiation resistance in ccRCC cells and enhanced the levels of radiation-induced autophagy. Moreover, inhibition of autophagy by chloroquine (CQ) pretreatment largely eliminated the effect of DIRAS2 overexpression on radiation resistance. Finally, molecular mechanism investigation showed that DIRAS2 activated the mitogen-activated protein kinase (MAPK) kinase 4 (MKK4)-c-Jun NH2-terminal kinase 1 (JNK1)-Bcl-2 pathway. Conclusion: Taken together, these results indicated that DIRAS2 may confer radiation resistance to human RCC via autophagy induction through the MKK4-JNK1-Bcl-2 signalling pathway.
Keywords: Clear cell renal cell carcinoma, DIRAS2, autophagy, radiation resistance.
Full-Text [PDF 1633 kb]   (274 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
1. Hsieh JJ, Purdue MP, Signoretti S, et al. (2017) Renal cell carcinoma. Nat Rev Dis Primers, 3: 17009. [DOI:10.1038/nrdp.2017.9] [PMID] []
2. Rini BI, Campbell SC, Escudier B (2009) Renal cell carcinoma. Lancet, 373(9669): 1119-32. [DOI:10.1016/S0140-6736(09)60229-4]
3. Ferlay J, Soerjomataram I, Dikshit R, et al. (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer, 136(5): E359-E86. [DOI:10.1002/ijc.29210] [PMID]
4. Siegel RL, Miller KD, Jemal A (2017) CA Cancer statistics. Cancer J Clin, 67(1): 7-30. [DOI:10.3322/caac.21387] [PMID]
5. Kroeger N, Xie W, Lee J-L, et al. (2013) Metastatic non-clear cell renal cell carcinoma treated with targeted therapy agents: characterization of survival outcome and application of the International mRCC Database Consortium criteria. Cancer, 119(16): 2999-3006. [DOI:10.1002/cncr.28151] [PMID] []
6. Vera-Badillo FE, Templeton AJ, Duran I, et al. (2015) Systemic therapy for non-clear cell renal cell carcinomas: a systematic review and meta-analysis. Eur Urol, 67(4): 740-9. [DOI:10.1016/j.eururo.2014.05.010] [PMID]
7. Van Poppel H, Da Pozzo L, Albrecht W, et al. (2011) A prospective, randomised EORTC intergroup phase 3 study comparing the oncologic outcome of elective nephron-sparing surgery and radical nephrectomy for low-stage renal cell carcinoma. Eur Urol, 59(4): 543-52. [DOI:10.1016/j.eururo.2010.12.013] [PMID]
8. Siva S, Kothari G, Muacevic A, et al. (2017) Radiotherapy for renal cell carcinoma: renaissance of an overlooked approach. Nat Rev Urol, 14(9): 549-63. [DOI:10.1038/nrurol.2017.87] [PMID]
9. Gasper R, Sot B, Wittinghofer A (2010) GTPase activity of Di-Ras proteins is stimulated by Rap1GAP proteins. Small GTPases, 1(3): 133-41. [DOI:10.4161/sgtp.1.3.14742] [PMID] []
10. Sutton MN, Yang H, Huang GY, et al. (2018) RAS-related GTPases DIRAS1 and DIRAS2 induce autophagic cancer cell death and are required for autophagy in murine ovarian cancer cells. Autophagy, 14(4): 637-53. [DOI:10.1080/15548627.2018.1427022] [PMID] []
11. Reif A, Nguyen TT, Weissflog L, et al. (2011) DIRAS2 is associated with adult ADHD, related traits, and co-morbid disorders. Neuropsychopharmacology, 36(11): 2318-27. [DOI:10.1038/npp.2011.120] [PMID] []
12. Rao H, Li X, Liu M, et al. (2020) Di-Ras2 promotes renal cell carcinoma formation by activating the mitogen-activated protein kinase pathway in the absence of von Hippel-Lindau protein. Oncogene, 39(19): 3853-66. [DOI:10.1038/s41388-020-1247-y] [PMID]
13. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, et al. (2021) Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy, 17(1): 1-382 [DOI:10.1080/15548627.2020.1797280] [PMID] []
14. Patel NH, Sohal SS, Manjili MH, et al. (2020) The roles of autophagy and senescence in the tumor cell response to radiation. Radiat Res, 194(2):103-15. [DOI:10.1667/RADE-20-00009] [PMID] []
15. Kuwahara Y, Oikawa T, Ochiai Y, et al. (2011) Enhancement of autophagy is a potential modality for tumors refractory to radiotherapy. Cell Death Dis, 2: e177. [DOI:10.1038/cddis.2011.56] [PMID] []
16. Galluzzi L, Bravo-San Pedro JM, Demaria S, et al. (2017) Activating autophagy to potentiate immunogenic chemotherapy and radiation therapy. Nat Rev Clin Oncol, 14(4): 247-58. [DOI:10.1038/nrclinonc.2016.183] [PMID]
17. Lu J, Cai L, Dai Y, et al. (2021) Polydopamine-based nanoparticles for photothermal therapy/chemotherapy and their synergistic therapy with autophagy inhibitor to promote antitumor treatment. Chem Rec, 21(4): 781-96. [DOI:10.1002/tcr.202000170] [PMID]
18. Alnasser HA, Guan Q, Zhang F, et al. (2016) Requirement of clusterin expression for prosurvival autophagy in hypoxic kidney tubular epithelial cells. Am J Physiol Renal Physiol, 310(2): F160-F73. [DOI:10.1152/ajprenal.00304.2015] [PMID]
19. Kobara M, Nessa N, Toba H, Nakata T (2021) Induction of autophagy has protective roles in imatinib-induced cardiotoxicity. Toxicol Rep, 8: 1087-97. [DOI:10.1016/j.toxrep.2021.05.008] [PMID] []
20. Chaurasia M, Gupta S, Das A, et al. (2019) Radiation induces EIF2AK3/PERK and ERN1/IRE1 mediated pro-survival autophagy. Autophagy, 15(8): 1391-406. [DOI:10.1080/15548627.2019.1582973] [PMID] []
21. Klionsky DJ, Abdelmohsen K, Abe A, et al. (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 12(1): 1-222. [DOI:10.1080/15548627.2015.1100356] [PMID] []
22. Lee SY, Jeong EK, Ju MK, et al. (2017) Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Mol Cancer, 16(1): 10. [DOI:10.1186/s12943-016-0577-4] [PMID] []
23. Zhou Y-Y, Li Y, Jiang W-Q, Zhou L-F (2015) MAPK/JNK signalling: a potential autophagy regulation pathway. Biosci Rep, 35(3):e00199. [DOI:10.1042/BSR20140141] [PMID] []
24. Wei Y, Pattingre S, Sinha S, et al. (2008) JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell, 30(6): 678-88. [DOI:10.1016/j.molcel.2008.06.001] [PMID] []
25. Volpe A and Patard JJ (2010) Prognostic factors in renal cell carcinoma. World J Urol, 28(3): 319-27. [DOI:10.1007/s00345-010-0540-8] [PMID]
26. De Meerleer G, Khoo V, Escudier B, et al. (2014) Radiotherapy for renal-cell carcinoma. Lancet Oncol, 15(4): e170-e7. [DOI:10.1016/S1470-2045(13)70569-2] [PMID]
27. Comprehensive molecular characterization of clear cell renal cell carcinoma (2013). Nature, 499(7456): 43-9. [DOI:10.1038/nature12222] [PMID] []
28. Choueiri TK and Kaelin WG (2020) Targeting the HIF2-VEGF axis in renal cell carcinoma. Nat Med, 26(10): 1519-30. [DOI:10.1038/s41591-020-1093-z] [PMID]
29. Xu H-D and Qin Z-H (2019) Beclin 1, Bcl-2 and autophagy. Adv Exp Med Biol, 1206: 109-26. [DOI:10.1007/978-981-15-0602-4_5] [PMID]
30. Eng CH, Wang Z, Tkach D, et al. (2016) Macroautophagy is dispensable for growth of KRAS mutant tumors and chloroquine efficacy. USA. Proc Natl Acad Sci, 113(1): 182-7. [DOI:10.1073/pnas.1515617113] [PMID] []
31. Morris MR and Latif F (2017) The epigenetic landscape of renal cancer. Nat Rev Nephrol, 13(1): 47-60. [DOI:10.1038/nrneph.2016.168] [PMID]
32. Banumathy G and Cairns P (2010) Signaling pathways in renal cell carcinoma. Cancer Biol Ther, 10(7): 658-64. [DOI:10.4161/cbt.10.7.13247] [PMID] []
Send email to the article author

Add your comments about this article
Your username or Email:


XML     Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Cai C, He Y, Yue D, Wang Z, Guo N, Tian J. DIRAS2 promotes radiation resistance in renal cell carcinoma via autophagy induction and MKK4-JNK1 pathway activation. Int J Radiat Res 2023; 21 (4) :805-813
URL: http://ijrr.com/article-1-5086-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 21, Issue 4 (10-2023) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 50 queries by YEKTAWEB 4642