[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 22, Issue 1 (1-2024) ::
Int J Radiat Res 2024, 22(1): 145-153 Back to browse issues page
The effect of curcumin in combination with radiation therapy and hyperthermia for a glioblastoma spheroid model
B. Ghanbari , A. Neshasteh Riz , Z. Hormozi Moghaddam Hormozi Moghaddam
Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran , hormozimoghadam.z@iums.ac.ir
Abstract:   (1079 Views)
Background: The most common form of human primary brain tumor resistant to treatment is glioblastoma multiforme. For brain tumors, it is essential to optimize the treatment regimen with curcumin as a sensitizing agent and adjunctive to traditional or alternative therapy. This study aimed to determine the combined effects of cell death and apoptosis caused by curcumin before and after radiation with hyperthermia on glioblastoma in a monolayer cell culture and spheroid cell model. Materials and Methods: The spheroid cells were separately or simultaneously treated with the IC50% concentration of curcumin before and after 2 Gy radiation. Hyperthermia was then applied by incubating the cells at 43 °C for 1 hr. The survival rate of the cells was measured via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Bax, Bcl-2, and caspase-3 expressions were quantified with real-time PCR (RT-PCR). Results: Cell viability significantly decreased in the curcumin (before) with radiation group (CCM+IR) by 51.12%, and in the radiation, curcumin, and hyperthermia group (IR+ CCM+ H) by 31.01%. The expression level of Bax and caspase-3 significantly increased in the combination of radiation, curcumin, and hyperthermia group (IR+ CCM+ H) by 3.80 ± 0.02 and 5.13 ± 0.12, respectively. The Bcl-2 expression level in the radiation with curcumin and hyperthermia group was 0.41 ± 0.01, compared to the curcumin before radiation group (0.70± 0.05) and the curcumin after radiation group (0.60± 0.02). Conclusion: Curcumin was more effective on cell death after radiation. It caused a synergistic effect in combination with other adjuvant therapies for glioblastoma spheroid cells.
Keywords: Glioblastoma multiforme, spheroid cell culture, curcumin, radiation, hyperthermia.
Full-Text [PDF 735 kb]   (344 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. Peter K, Kar SK, Gothalwal R, et al. (2021) Curcumin in combination with other adjunct therapies for brain tumor treatment: Existing knowledge and blueprint for future research. International Journal of Molecular and Cellular Medicine, 10(3): 163-181.
2. Sung H, Ferlay J, Siegel RL, et al. (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 71: 209-49. [DOI:10.3322/caac.21660]
3. Sigmond J, Honeywell R, Postma T, et al. (2009) Gemcitabine uptake in glioblastoma multiforme: potential as a radiosensitizer. Annals of Oncology, 20(1): 182-187. [DOI:10.1093/annonc/mdn543]
4. Liu Y, Song X, Wu M, et al. (2020) Synergistic efffects of resveratrol and temozolomide against glioblastoma cells: underlying mechanism and therapeutic implications. Cancer Manag Res, 12: 8341-8354. [DOI:10.2147/CMAR.S258584]
5. Schwarz K, Dobiasch S, Nguyen L, et al. (2020) Modification of radiosensitivity by curcumin in human pancreatic cancer cell lines. Sci Rep, 10(1): 3815. [DOI:10.1038/s41598-020-60765-1]
6. Huang BR, Tsai CH, Chen CC, et al. (2019) Curcumin promotes connexin 43 degradation and temozolomide-induced apoptosis in glioblastoma cells. Am J Chin Med, 47(3): 657-674. [DOI:10.1142/S0192415X19500344]
7. Jäättelä M (2004) Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene, 23(16): 2746-2756. [DOI:10.1038/sj.onc.1207513]
8. Blanquicett C, Gillespie GY, Nabors LB, et al. (2002) Induction of thymidine phosphorylase in both irradiated and shielded, contralateral human U87MG glioma xenografts: implications for a dual modality treatment using capecitabine and irradiation. Mol Cancer Ther, 1(12): 1139-1145.
9. Karunagaran D, Rashmi R, Kumar TR (2005) Induction of apoptosis by curcumin and its implications for cancer therapy. Curr Cancer Drug Targets, 5(2):117-129. [DOI:10.2174/1568009053202081]
10. Koul D, Takada Y, Shen R, et al. (2006) PTEN enhances TNF-induced apoptosis through modulation of nuclear factor-kappaB signaling pathway in human glioma cells. Biochem Biophys Res Commun, 350(2): 463-471. [DOI:10.1016/j.bbrc.2006.09.077]
11. Nagane M, Levitzki A, Gazit A, et al. (1998) Drug resistance of human glioblastoma cells conferred by a tumor-specific mutant epidermal growth factor receptor through modulation of Bcl-XL and caspase-3-like proteases. Proc Natl Acad Sci U S A, 95(10): 5724-5729. [DOI:10.1073/pnas.95.10.5724]
12. Biswas DK, Martin KJ, McAlister C, et al. (2003) Apoptosis caused by chemotherapeutic inhibition of nuclear factor-kappaB activation. Cancer Res, 63(2): 290-295.
13. Dalen H and Neuzil J (2003) α-Tocopheryl succinate sensitises a T lymphoma cell line to TRAIL-induced apoptosis by suppressing NF-κB activation. British Journal of Cancer, 88(1): 153-158. [DOI:10.1038/sj.bjc.6600683]
14. Pennarun G, Granotier C, Gauthier LR, et al. (2005) Apoptosis related to telomere instability and cell cycle alterations in human glioma cells treated by new highly selective G-quadruplex ligands. Oncogene, 24(18): 2917-28. [DOI:10.1038/sj.onc.1208468]
15. Shervington A, Cruickshanks N, Wright H, et al. (2006) Glioma: what is the role of c-Myc, hsp90 and telomerase? Mol Cell Biochem, 283(1-2): 1-9. [DOI:10.1007/s11010-006-2495-z]
16. Woo JH, Kim YH, Choi YJ, et al. (2003) Molecular mechanisms of curcumin-induced cytotoxicity: induction of apoptosis through generation of reactive oxygen species, down-regulation of Bcl-XL and IAP, the release of cytochrome c and inhibition of Akt. Carcinogenesis, 24(7): 1199-1208. [DOI:10.1093/carcin/bgg082]
17. Laha D, Pal K, Chowdhuri AR, et al. (2019) Fabrication of curcumin-loaded folic acid-tagged metal organic framework for triple negative breast cancer therapy in in vitro and in vivo systems. New Journal of Chemistry, 43(1): 217-229. [DOI:10.1039/C8NJ03350A]
18. Karmakar S, Banik NL, Patel SJ, et al. (2006) Curcumin activated both receptor-mediated and mitochondria-mediated proteolytic pathways for apoptosis in human glioblastoma T98G cells. Neurosci Lett, 407(1): 53-58. [DOI:10.1016/j.neulet.2006.08.013]
19. Anto RJ, Mukhopadhyay A, Denning K, et al. (2002) Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: its suppression by ectopic expression of Bcl-2 and Bcl-xl. Carcinogenesis, 23(1): 143-150. [DOI:10.1093/carcin/23.1.143]
20. Duvoix A, Blasius R, Delhalle S, et al. (2005) Chemopreventive and therapeutic effects of curcumin. Cancer Lett, 223(2): 181-190. [DOI:10.1016/j.canlet.2004.09.041]
21. Moloudi K, Neshasteriz A, Hosseini A, et al. (2017) Synergistic Effects of Arsenic Trioxide and Radiation: Triggering the Intrinsic Pathway of Apoptosis. Iran Biomed J, 21(5): 330-337. [DOI:10.18869/acadpub.ibj.21.5.330]
22. Su X, Chen S, Lu H, et al. (2021) Study on the inhibitory effect of curcumin on GBM and its potential mechanism. Drug Des Devel Ther, 15: 2769-2781. [DOI:10.2147/DDDT.S306602]
23. Lee Y-J, Park K-S, Lee S-H (2021) Curcumin targets both apoptosis and necroptosis in acidity-tolerant prostate carcinoma cells. BioMed Research International, 2021: 8859181. [DOI:10.1155/2021/8859181]
24. Kim JY, Jung CW, Lee WS, et al. (2022) Interaction of curcumin with glioblastoma cells via high and low linear energy transfer radiation therapy inducing radiosensitization effects. J Radiat Res, 63(3): 342-353. [DOI:10.1093/jrr/rrac016]
25. Hildebrandt B, Wust P, Ahlers O, et al. (2002) The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol, 43(1): 33-56. [DOI:10.1016/S1040-8428(01)00179-2]
26. Neshasteh-Riz A, Rahdani R, Mostaar A (2014) Evaluation of The Combined Effects of Hyperthermia, Cobalt-60 Gamma Rays and IUdR on cultured glioblastoma spheroid cells and dosimetry using TLD-100. Cell J, 16(3): 335-342.
27. Rao W, Deng ZS, Liu J (2010) A review of hyperthermia combined with radiotherapy/chemotherapy on malignant tumors. Crit Rev Biomed Eng, 38(1): 101-116. [DOI:10.1615/CritRevBiomedEng.v38.i1.80]
28. Feist M, Huang X, Müller JM, et al. (2014) Can hyperthermic intraperitoneal chemotherapy efficiency be improved by blocking the DNA repair factor COP9 signalosome? Int J Colorectal Dis, 29(6): 673-680. [DOI:10.1007/s00384-014-1861-7]
29. Khaitan D, Chandna S, Arya MB (2006) Establishment and characterization of multicellular spheroids from a human glioma cell line; Implications for tumor therapy. Journal of Translational Medicine, 4(1): 12. [DOI:10.1186/1479-5876-4-12]
30. Carlsson J and Yuhas JM (1984) Liquid-overlay culture of cellular spheroids. Recent Results Cancer Res, 95: 1-23. [DOI:10.1007/978-3-642-82340-4_1]
31. McFadden RM, Larmonier CB, Shehab KW, et al. (2015) The role of curcumin in modulating colonic microbiota during colitis and colon cancer prevention. Inflamm Bowel Dis, 21(11): 2483-2494. [DOI:10.1097/MIB.0000000000000522]
32. Mittal L, Aryal UK, Camarillo IG, et al. (2020) Effective electrochemotherapy with curcumin in MDA-MB-231-human, triple negative breast cancer cells: A global proteomics study. Bioelectrochemistry, 131: 107350. [DOI:10.1016/j.bioelechem.2019.107350]
33. Zhu JY, Yang X, Chen Y, et al. (2017) Curcumin suppresses lung cancer stem cells via inhibiting wnt/β-catenin and sonic hedgehog pathways. Phytother Res, 31(4): 680-688. [DOI:10.1002/ptr.5791]
34. Qian Y, Ma J, Guo X, et al. (2015) Curcumin enhances the radiosensitivity of U87 cells by inducing DUSP-2 up-regulation. Cell Physiol Biochem, 35(4): 1381-1393. [DOI:10.1159/000373959]
35. Dhandapani KM, Mahesh VB, Brann DW (2007) Curcumin suppresses growth and chemoresistance of human glioblastoma cells via AP-1 and NFkappaB transcription factors. J Neurochem, 102(2): 522-538. [DOI:10.1111/j.1471-4159.2007.04633.x]
36. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol, 35(4): 495-516. [DOI:10.1080/01926230701320337]
37. Zoi V, Galani V, Vartholomatos E, et al. (2021) Curcumin and radiotherapy exert synergistic anti-glioma effect in-vitro. Biomedicines, 9(11). [DOI:10.3390/biomedicines9111562]
38. Aravindan N, Veeraraghavan J, Madhusoodhanan R, et al. (2011) Curcumin regulates low-linear energy transfer γ-radiation-induced NFκB-dependent telomerase activity in human neuroblastoma cells. Int J Radiat Oncol Biol Phys, 79(4): 1206-1215. [DOI:10.1016/j.ijrobp.2010.10.058]
39. Faqihi F, Neshastehriz A, Soleymanifard S, et al. (2015) Radiation-induced bystander effect in non-irradiated glioblastoma spheroid cells. J Radiat Res, 56(5): 777-783. [DOI:10.1093/jrr/rrv039]
40. Hu S, Xu Y, Meng L, et al. (2018) Curcumin inhibits proliferation and promotes apoptosis of breast cancer cells. Exp Ther Med, 16(2): 1266-1272. [DOI:10.3892/etm.2018.6345]
41. Iliakis G, Wu W, Wang M (2008) DNA double strand break repair inhibition as a cause of heat radiosensitization: re-evaluation considering backup pathways of NHEJ. Int J Hyperthermia, 24(1): 17-29. [DOI:10.1080/02656730701784782]
42. Takahashi A, Matsumoto H, Nagayama K, et al. (2004) Evidence for the involvement of double-strand breaks in heat-induced cell killing. Cancer Res, 64(24): 8839-8845. [DOI:10.1158/0008-5472.CAN-04-1876]
43. Chendil D, Ranga RS, Meigooni D, et al. (2004) Curcumin confers radiosensitizing effect in prostate cancer cell line PC-3. Oncogene, 23(8):1599-1607. [DOI:10.1038/sj.onc.1207284]
44. Lohr F, Hu K, Huang Q, et al. (2000) Enhancement of radiotherapy by hyperthermia-regulated gene therapy. Int J Radiat Oncol Biol Phys, 48(5): 1513-1518. [DOI:10.1016/S0360-3016(00)00788-4]
45. Stankiewicz AR, Livingstone AM, Mohseni N, et al. (2009) Regulation of heat-induced apoptosis by Mcl-1 degradation and its inhibition by Hsp70. Cell Death Differ, 16(4): 638-647. [DOI:10.1038/cdd.2008.189]
46. Tang JC, Shi HS, Wan LQ, et al. (2013) Enhanced antitumor effect of curcumin liposomes with local hyperthermia in the LL/2 model. Asian Pac J Cancer Prev, 14(4): 2307-2310. [DOI:10.7314/APJCP.2013.14.4.2307]
47. Helleday T, Petermann E, Lundin C, et al. (2008) DNA repair pathways as targets for cancer therapy. Nat Rev Cancer, 8(3): 193-204. [DOI:10.1038/nrc2342]
48. Wust P, Hildebrandt B, Sreenivasa G, et al. (2002) Hyperthermia in combined treatment of cancer. Lancet Oncol, 3(8): 487-497. [DOI:10.1016/S1470-2045(02)00818-5]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghanbari B, Neshasteh Riz A, Hormozi Moghaddam Z H M. The effect of curcumin in combination with radiation therapy and hyperthermia for a glioblastoma spheroid model. Int J Radiat Res 2024; 22 (1) :145-153
URL: http://ijrr.com/article-1-5226-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 22, Issue 1 (1-2024) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 50 queries by YEKTAWEB 4660