[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 22, Issue 1 (1-2024) ::
Int J Radiat Res 2024, 22(1): 193-198 Back to browse issues page
Protective efficacy of luteolin against γ-rays induced early pneumonitis in rats
S.S. Tawfik , A.A. El Kady , R.M. Ebrahim , W.A. El khouly
Health Radiation Research Department, National Centre for Radiation Research and Technology (NCRRT), P. O. Box 29, Nasr City, Cairo, Egypt. Egyptian Atomic Energy Authority, Nasr City, Cairo, Egypt , elkadyah13@gmail.com
Abstract:   (243 Views)
Background: Radiotherapy treats over 70% of thoracic tumours; however, the technique frequently causes radiation-pneumonitis. Luteolin exhibits anti-inflammatory properties and inhibits chemotaxis release. The radio protective effects of luteolin on γ-rays-induced pneumonitis in rats were evaluated. Materials and Methods: Thirty-two rats were distributed into four groups. Rats were exposed to 8.5Gy-γ-rays then, treated with or without luteolin for 20-days. Oxidative-stress, antioxidant, anti-inflammatory markers levels, collagen content, and histopathological structures were evaluated in lung tissue. Results: Increased reactive oxygen species (ROS) production and oxidative stress after irradiation were down-regulated by luteolin treatment, demonstrating luteolin’s antioxidant and anti-inflammatory properties. Luteolin attenuated lung histopathological changes which represented by desquamation of bronchiolar epithelia with pre-bronchiolar leukocytic infiltrations, proliferation of pneumocytes type ІІ, emphysema and collapse induced by γ-rays. Conclusion: The current study found, for the first time, that luteolin has a protective effect on whole body γ-rays-induced early lung injury in rat model.
Keywords: Luteolin, radio protector, radiation pneumonitis, γ-rays, rats.
Full-Text [PDF 860 kb]   (171 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. 1. Wang L, Liu C, Lu W, et al. (2023) ROS-sensitive Crocin-loaded chitosan microspheres for lung targeting and attenuation of radiation-induced lung injury. Carbohydr Polym, 307:120628. [DOI:10.1016/j.carbpol.2023.120628]
2. Ma F, Zhu X, Niu Y, et al. (2023) FGFR inhibitors combined with nab-paclitaxel - A promising strategy to treat non-small cell lung cancer and overcome resistance. Front Oncol, 13:1088444. [DOI:10.3389/fonc.2023.1088444]
3. Cogno N, Bauer R, Durante M (2022) An agent-based model of radiation-induced lung fibrosis. Int J Mol Sci, 23(22): 13920. [DOI:10.3390/ijms232213920]
4. Shi LL, Yang JH, Yao HF (2023) Multiple regression analysis of risk factors related to radiation pneumonitis. World J Clin Cases, 11(5):1040-1048. [DOI:10.12998/wjcc.v11.i5.1040]
5. Zeng Z, Xu L, Xie XY, et al. (2020) Pulmonary pathology of early-phase COVID-19 pneumonia in a patient with a benign lung lesion. Histopathology, 77(5): 823-831. [DOI:10.1111/his.14138]
6. Zhang Y, Chen M, Wang Y, et al. (2023) Effect of SIRT1 regulating Nrf2/HO-1 signaling pathway on sepsis-induced acute lung injury. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 35(3): 244-249.
7. Aryappalli P, Shabbiri K, Masad RJ, et al. (2019) Inhibition of Tyrosine-phosphorylated STAT3 in human breast and lung cancer cells by Manuka honey is mediated by selective antagonism of the IL-6 receptor. Int J Mol Sci, 20(18): 4340. [DOI:10.3390/ijms20184340]
8. Azab KS, El Fatih NM, El Tawill G, El Bakary NM (2020) Pro-apoptotic and anti-neoplastic impact of luteolin on solid Ehrlich carcinoma.bearing exposed to gamma radiation. J Cancer Res Ther, 16(6):1506-1516. [DOI:10.4103/jcrt.JCRT_1116_19]
9. Esmeeta A, Adhikary S, Dharshnaa V, et al. (2022) Plant-derived bioactive compounds in colon cancer treatment: An updated review. Biomed Pharmacother 153: 113384. [DOI:10.1016/j.biopha.2022.113384]
10. Syahputra RA, Harahap U, Dalimunthe A, et al. (2022) The role of flavonoids as a cardioprotective strategy against doxorubicin-induced cardiotoxicity: A review. Molecules, 27(4):1320. [DOI:10.3390/molecules27041320]
11. Raghu SV, Rao S, Kini V, Kudva AK, et al. (2023) Fruits and their phytochemicals in mitigating the ill effects of ionizing radiation: review on the existing scientific evidence and way forward. Food Funct, 14(3):1290-1319. [DOI:10.1039/D2FO01911F]
12. Mu J, Ma H, Chen H, et al. (2021) Luteolin Prevents UVB-induced skin photoaging damage by modulating SIRT3/ROS/MAPK signaling: An in-vitro and in-vivo studies. Front Pharmacol, 12: 728261. [DOI:10.3389/fphar.2021.728261]
13. Kang SH, Bak DH, Lee SS, Bai HW, et al. (2021) Radioprotective effects of centipedegrass extract on NIH-3T3 fibroblasts via anti-oxidative activity. Exp Ther Med, 21(5): 419. [DOI:10.3892/etm.2021.9863]
14. Kumar P and Patel D (2021) Ocimum Sanctum: An All-Round Treatment for Cancer? Altern Ther Health Med, 31: AT6685. PMID: 34331753.
15. Chen YH, Wu JX, Yang SF, Hsiao YH (2023) Synergistic combination of luteolin and asiatic acid on cervical cancer in vitro and in vivo. Cancers (Basel), 15(2): 548. [DOI:10.3390/cancers15020548]
16. Erdoğan MK, Ağca CA, Aşkın H (2022) Quercetin and luteolin improve the anticancer effects of 5-fluorouracil in human colorectal adenocarcinoma in vitro model: A mechanistic insight. Nutr Cancer, 74(2): 660-676. [DOI:10.1080/01635581.2021.1900301]
17. Yang SC, Chen PJ, Chang SH, et al. (2018) Luteolin attenuates neutrophilic oxidative stress and inflammatory arthritis by inhibiting Raf1 activity. Biochem Pharmacol, 154: 384-396. [DOI:10.1016/j.bcp.2018.06.003]
18. Gasperetti T, Miller T, Gao F, et al. (2021) Polypharmacy to mitigate acute and delayed radiation syndromes. Front Pharmacol, 12: 634477. [DOI:10.3389/fphar.2021.634477]
19. Ruan JS, Liu YP, Zhang L, et al. (2012) Luteolin reduces the invasive potential of malignant melanoma cells by targeting β3 integrin and the epithelial-mesenchymal transition. Acta Pharmacol Sin, 33(10): 1325-31. [DOI:10.1038/aps.2012.93]
20. Saini R, Verma S, Singh A, Gupta M (2013) Role of active principles of Podophyllum hexandrum in amelioration of radiation mediated lung injuries by reactive oxygen/nitrogen species reduction. CellBio, 2(3):105-16. 21. Bancroft D, Stevens A and Turmer R (1996) Theory and practice of histological technique, 4th ed., Churchill Living Stone, Edinburgh, London, Melbourne, p. 47-67. [DOI:10.4236/cellbio.2013.23012]
21. Snedecor GW, Cochran WG (1994) "Statistical Methods", 8th ed., Calcutta, India: Oxford & IBH Publishing Co, p. 503-513.
22. Arora A, Bhuria V, Singh S, et al. (2022) Amifostine analog, DRDE-30, alleviates radiation induced lung damage by attenuating inflammation and fibrosis. Life Sci, 298: 120518. [DOI:10.1016/j.lfs.2022.120518]
23. Brazee PL and Sznajder JI (2020) Targeting the linear ubiquitin assembly complex to modulate the host response and improve influenza A virus induced lung injury. Arch Bronconeumol (Engl Ed), 56(9):586-591. [DOI:10.1016/j.arbres.2020.04.019]
24. Carteaux G, Parfait M, Combet M, et al. (2021) Patient-self inflicted lung injury: A practical review. J Clin Med, 10(12): 2738. [DOI:10.3390/jcm10122738]
25. Liu X, Zhang J, Xie W (2022) The role of ferroptosis in acute lung injury. Mol Cell Biochem, 477(5): 1453-1461. [DOI:10.1007/s11010-021-04327-7]
26. Piper A, Song Y, Eves ND, Maher TM (2014) Year in review 2013: Acute lung injury, interstitial lung diseases, sleep and physiology. Respirology, 19(3):428-37. [DOI:10.1111/resp.12254]
27. Wessels I, Pupke JT, von Trotha K, et al. (2020) Zinc supplementation ameliorates lung injury by reducing neutrophil recruitment and activity. Thorax, 75(3): 253-261. [DOI:10.1136/thoraxjnl-2019-213357]
28. Tian C, Zhang P, Yang J, et al. (2019) The protective effect of the flavonoid fraction of Abutilon theophrasti Medic. leaves on LPS‐induced acute lung injury in via the NF‐κB and MAPK signalling pathways. Biomed Pharmacother, 109:1024-1031. [DOI:10.1016/j.biopha.2018.10.197]
29. Ortiz G, Garay M, Mendoza D, Cardinal-Fernández P (2019) Impact and safety of open lung biopsy in patients with acute respiratory distress syndrome (ARDS). Med Intensiva (Engl Ed), 43(3): 139-146. [DOI:10.1016/j.medin.2018.01.007]
30. Zhen S, Qiang R, Lu J, et al. (2022) TGF-β1-based CRISPR/Cas9 Gene Therapy Attenuates Radiation-induced Lung Injury. Curr Gene Ther, 22(1):59-65. [DOI:10.2174/1566523220666201230100523]
31. Cao S, Xiao Y, Huang R, et al. (2022) Dietary supplementation with hydroxyproline enhances growth performance, collagen synthesis and muscle quality of Carassius auratus triploid. Front Physiol, 13: 913800. [DOI:10.3389/fphys.2022.913800]
32. Wang J, Zhou F, Li Z, et al. (2018) Pharmacological targeting of BET proteins attenuates radiation-induced lung fibrosis. Sci Rep, 8(1): 998. [DOI:10.1038/s41598-018-19343-9]
33. Yesildag K, Gur C, Ileriturk M, Kandemir FM (2022) Evaluation of oxidative stress, inflammation, apoptosis, oxidative DNA damage and metalloproteinases in the lungs of rats treated with cadmium and carvacrol. Mol Biol Rep, 49(2):1201-1211. doi: 10.1007/s11033-021-06948-z. [DOI:10.1007/s11033-021-06948-z]
34. Keskinidou C, Vassiliou AG, Dimopoulou I, et al. (2022) Mechanistic understanding of lung inflammation: Recent advances and emerging techniques. J Inflamm Res, 15: 3501-3546. [DOI:10.2147/JIR.S282695]
35. Ji L, Su S, Xin M, et al. (2022) Luteolin ameliorates hypoxia-induced pulmonary hypertension via regulating HIF-2α-Arg-NO axis and PI3K-AKT-eNOS-NO signaling pathway. Phytomedicine, 104: 154329. [DOI:10.1016/j.phymed.2022.154329]
36. Dar AA, Fehaid A, Alkhatani S, et al. (2021) The protective role of luteolin against the methotrexate-induced hepato-renal toxicity via its antioxidative, anti-inflammatory, and anti-apoptotic effects in rats. Hum Exp Toxicol, 40(7):1194-1207. [DOI:10.1177/0960327121991905]
37. Oyagbemi AA, Akinrinde AS, Adebiyi OE, et al. (2020) Luteolin supplementation ameliorates cobalt-induced oxidative stress and inflammation by suppressing NF-кB/Kim-1 signaling in the heart and kidney of rats. Environ Toxicol Pharmacol, 80:103488. [DOI:10.1016/j.etap.2020.103488]
38. Akinrinde AS, Soetan KO, Tijani MO (2022) Exacerbation of diclofenac-induced gastroenterohepatic damage by concomitant exposure to sodium fluoride in rats: protective role of luteolin. Drug Chem Toxicol, 45(3): 999-1011. [DOI:10.1080/01480545.2020.1802478]
39. Wang M, Zhai X, Li J, et al. (2021) The Role of cytokines in predicting the response and adverse events related to immune checkpoint inhibitors. Front Immunol, 12:670391. [DOI:10.3389/fimmu.2021.670391]
40. Zhou YS, Cui Y, Zheng JX, et al. (2022) Luteolin relieves lung cancer-induced bone pain by inhibiting NLRP3 inflammasomes and glial activation in the spinal dorsal horn in. Phytomedicine, 96:153910. [DOI:10.1016/j.phymed.2021.153910]
41. Durkin A, Vu HY, Lee H (2020) The VR23 antitumor compound also shows strong anti-inflammatory effects in a human rheumatoid arthritis cell model and acute lung inflammation in . J Immunol, 204(4):788-795. [DOI:10.4049/jimmunol.1900531]
42. Abo-Zaid OA, Moawed FS, Hassan HA, Moustafa EM (2022) Bisphenol-A/Radiation mediated inflammatory response activates EGFR/KRAS/ERK1/2 signaling pathway leads to lung carcinogenesis incidence. Int J Immunopathol Pharmacol, 36: 3946320221092918. [DOI:10.1177/03946320221092918]
43. Ahmadvand MH, Nikzad S, Changizi V, et al. (2023) Evaluation of the Mitigation Effect of Spirulina against lung injury induced by radiation in rats. Curr Radiopharm, 16(1): 71-77. [DOI:10.2174/1874471015666220418133919]
44. Zhou J, Wu P, Sun H, et al. (2022) Lung tissue extracellular matrix-derived hydrogels protect against radiation-induced lung injury by suppressing epithelial-mesenchymal transition. J Cell Physiol, 235(3): 2377-2388. [DOI:10.1002/jcp.29143]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tawfik S, El Kady A, Ebrahim R, El khouly W. Protective efficacy of luteolin against γ-rays induced early pneumonitis in rats. Int J Radiat Res 2024; 22 (1) :193-198
URL: http://ijrr.com/article-1-5256-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 22, Issue 1 (1-2024) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 48 queries by YEKTAWEB 4652