[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 22, Issue 3 (7-2024) ::
Int J Radiat Res 2024, 22(3): 559-564 Back to browse issues page
Fluoro-2-deoxy-D-glucose (18F-FDG) positron slowing down, annihilation, and electron capture absorbed doses in female patients
F. Mohajeri , A. Ezzati , M. Studenski
The University of Tabriz, Department of Physics, Tabriz, Iran , ah_ezzati63@yahoo.com
Abstract:   (1071 Views)
Background: 18-F fluoro-2-deoxy-D-glucose (18F-FDG) is the most common tracer in whole-body positron emission tomography (PET) imaging for cancer. The diagnostic information gained from a 18F-FDG is beneficial, but the administration of radioactive material always comes with an increased risk of secondary cancer. The objective of this paper was to calculate the effective dose for 18F-FDG injected patients considering the specific contribution from positron slowing down, positron annihilation, and electron capture mechanisms. Materials and Methods:  The dose for various organs was estimated by using the Monte Carlo (MC) method. The Medical Internal Radiation Dose (MIRD) female phantom was used for the simulations and the effective doses to various organs from internal exposure from a 18F-FDG injection were calculated using a biokinetic model and International Commission on Radiological Protection (ICRP) publication 128 provided data. Calculated doses were compared with measured doses found in published studies. Results: The dose for each organ is dependent on the 18F decay mode. The total effective dose is 6.73 mSv when the administered activity is 185 MBq. Positron annihilation leads to the highest average effective dose at 3.57 mSv. The effective doses for positron slowing and electron capture gammas are 2.99 and 0.17 mSv, respectively. The urinary bladder, followed by the brain and heart, have the highest absorbed doses. The calculated doses for a female patient are in good agreement with published measured data. Conclusions: The results presented here can be used to scale the dose measured by a dosimeter to estimate the patient’s absorbed dose. Tracking the cumulative effective dose from medical procedures is an important aspect of managing the care of cancer patients to ensure regulatory limits are not exceeded.
Keywords: PET imaging, Radiation dosimetry, Monte Carlo, Uptake biokinetics, 18F-FDG.
Full-Text [PDF 742 kb]   (250 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. Boellaard R, O'Doherty MJ, Weber WA, Mottaghy FM, Lonsdale MN, Stroobants SG, Pruim J, et al (2010) FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. European journal of nuclear medicine and molecular imaging, 37(1): 181-200. [DOI:10.1007/s00259-009-1297-4]
2. Said M, Bathumalai J, Kamal I, Razak HA and Karim MA (2020) The Effective Dose Estimation of Patients Administered with 18F-FDG and Ga-68 DOTATATE in PET/CT Examination Associated with Gender and Weight. Physics and Technology in Medicine, 1(1): 15-21.
3. Wang RF, Wang ZG, Yu MM, Chen YH, Shi B and Xue W (2021) 18-F-Fluoroglucosylation of an arginine-arginine-leucine peptide as a potential tumor imaging agent for positron emission tomography. International Journal of Radiation Research, 19(2): 357-363. doi:10.52547/ijrr.19.2.14 [DOI:10.52547/ijrr.19.2.14]
4. Gümüş H (2022) Positron CSDA range and stopping power calculations in some human body tissues by using Lenz Jensen atomic screening function. Radiation Physics and Chemistry, 196: 110092. [DOI:10.1016/j.radphyschem.2022.110092]
5. Eckerman K and Endo A (2008) ICRP Publication 107. Nuclear decay data for dosimetric calculations. Annals of the ICRP, 38(3): 7-96. [DOI:10.1016/j.icrp.2008.10.001]
6. Buvat I and Lazaro D (2006) Monte Carlo simulations in emission tomography and GATE: An overview. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 569(2): 323-329. [DOI:10.1016/j.nima.2006.08.039]
7. El-din ME, Mahmoud R, Eid I, El-din ME and Rizk R (2018) Radiation dose rate assessment around patients in PET/CT units. International Journal of Nuclear Energy Science and Technology, 12(1): 32-44. [DOI:10.1504/IJNEST.2018.092597]
8. Sarrut D, Bardiès M, Boussion N, Freud N, Jan S, Létang JM, et al.Mauxion T (2014) A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications. Medical physics, 41(6Part1): 064301. [DOI:10.1118/1.4871617]
9. Sarrut D, Bała M, Bardiès M, Bert J, Chauvin M, Chatzipapas K, Jan S, et al (2021) Advanced Monte Carlo simulations of emission tomography imaging systems with GATE. Physics in Medicine & Biology, 66(10): 10TR03. [DOI:10.1088/1361-6560/abf276]
10. Pérez P and Valente M (2019) DOSIS: An integrated computational tool for patient-specific dosimetry in nuclear medicine by Monte Carlo and dose point kernel approaches. Applied Radiation and Isotopes, 150: 135-140. [DOI:10.1016/j.apradiso.2019.05.031]
11. Valk PE, Abella-Columna E, Haseman MK, Pounds TR, Tesar RD, Myers RW Hofer GA, et al (1999) Whole-body PET imaging with [18F] fluorodeoxyglucose in management of recurrent colorectal cancer. Archives of Surgery, 134(5): 503-511. [DOI:10.1001/archsurg.134.5.503]
12. Han EY, Bolch WE and Eckerman KF (2006) Revisions to the ORNL series of adult and pediatric computational phantoms for use with the MIRD schema. Health Physics, 90(4): 337-356. [DOI:10.1097/01.HP.0000192318.13190.c4]
13. Pelowitz DB (2005) MCNPXTM user's manual. Los Alamos National Laboratory, Los Alamos.
14. Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, Weber WA, et al (2015) FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. European journal of nuclear medicine and molecular imaging, 42(2): 328-354. [DOI:10.1007/s00259-014-2961-x]
15. Tarkin JM, Joshi FR, Evans NR, Chowdhury MM, Figg NL, Shah AV, Yu E, et al (2017) Detection of atherosclerotic inflammation by 68Ga-DOTATATE PET compared to [18F] FDG PET imaging. Journal of the American College of Cardiology, 69(14): 1774-1791. [DOI:10.1016/j.jacc.2017.01.060]
16. Mattsson S, Johansson L, Leide Svegborn S, Liniecki J, Noßke D, Riklund K, Carlsson S, et al (2015) ICRP publication 128: radiation dose to patients from radiopharmaceuticals: a compendium of current information related to frequently used substances. Annals of the ICRP, 44(2_suppl), 7-321. [DOI:10.1177/0146645314558019]
17. Quinn B, Holahan B, Aime J, Humm J, Germain JS and Dauer LT (2012) Measured dose rate constant from oncology patients administered 18F for positron emission tomography. Medical physics, 39(10): 6071-6079. [DOI:10.1118/1.4749966]
18. Mattsson S, Johansson L, Svegborn SL, Liniecki J, Noßke D, Riklund K, Carlsson S, et al (2015) ICRP Publication 128: Radiation dose to patients from radiopharmaceuticals: a compendium of current information related to frequently used substances. Ann ICRP, 44(2 Suppl), 7-321. [DOI:10.1177/0146645314558019]
19. Weber W, Czernin J, Anderson C, Badawi R, Barthel H, Bengel F, Graham M, et al (2020) The future of nuclear medicine, molecular imaging, and theranostics. Journal of Nuclear Medicine, 61(Supplement 2), 263S-272S. [DOI:10.2967/jnumed.120.254532]
20. Wahl RL, Dilsizian V and Palestro CJ (2021) At last, 18F-FDG for Inflammation and Infection! Journal of Nuclear Medicine, 62(8): 1048-1049. [DOI:10.2967/jnumed.121.262446]
21. Alçin G, Arslan E, Aksoy T, Akbas S and Cermik TF (2022) FDG uptake in breast cancer and Quantitative Assessment of Breast Parenchymal Uptake on 18F-FDG PET/CT: Association with Histopathological, Hormonal status, and Clinical Features. International Journal of Radiation Research, 20(4): 815-821. doi:10.52547/ijrr.20.4.13
22. Demir F and Yanarateş A (2020) Prognostic value of various metabolic parameters on pre-treatment 18-F-FDG PET/CT in patients with stage I-III non-small cell lung cancer. International Journal of Radiation Research, 18(4): 799-807. doi:10.52547/ijrr.18.4.799 [DOI:10.52547/ijrr.18.4.799]
23. Khamwan K, Krisanachinda A and Pasawang P (2010) The determination of patient dose from 18F-FDG PET/CT examination. Radiation protection dosimetry, 141(1): 50-55. [DOI:10.1093/rpd/ncq140]
24. Karim MKA, Sabarudin A, Muhammad N and Ng KH (2019) A comparative study of radiation doses between phantom and patients via CT angiography of the intra-/extra-cranial, pulmonary, and abdominal/pelvic arteries. Radiological physics and technology, 12(4): 374-381. [DOI:10.1007/s12194-019-00532-8]
25. Kaushik A, Jaimini A, Tripathi M, D'Souza M, Sharma R, Mishra AK, Dwarakanath BS, et al (2013) Estimation of patient dose in 18 F-FDG and 18 F-FDOPA PET/CT examinations. Journal of cancer research and therapeutics, 9(3): 477. [DOI:10.4103/0973-1482.119354]
26. Huang B, Law MWM and Khong PL (2009) Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology, 251(1): 166-174. [DOI:10.1148/radiol.2511081300]
27. Andersson M, Johansson L, Minarik D, Mattsson S and Leide-Svegborn S (2014) An internal radiation dosimetry computer program, IDAC 2.0, for estimation of patient doses from radiopharmaceuticals. Radiation protection dosimetry, 162(3): 299-305. [DOI:10.1093/rpd/nct337]
28. Andersson M, Johansson L, Eckerman K and Mattsson S (2017) IDAC-Dose 2.1, an internal dosimetry program for diagnostic nuclear medicine based on the ICRP adult reference voxel phantoms. EJNMMI research, 7(1): 1-10. [DOI:10.1186/s13550-017-0339-3]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohajeri F, Ezzati A, Studenski M. Fluoro-2-deoxy-D-glucose (18F-FDG) positron slowing down, annihilation, and electron capture absorbed doses in female patients. Int J Radiat Res 2024; 22 (3) :559-564
URL: http://ijrr.com/article-1-5572-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 22, Issue 3 (7-2024) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 48 queries by YEKTAWEB 4710