1. Marano L, Carbone L and Poto GE, et al. (2023) Extended Lymphadenectomy for Gastric Cancer in the Neoadjuvant Era: Current Status, Clinical Implications and Contentious Issues. Current Oncology, 30(1): 875-896. [
DOI:10.3390/curroncol30010067]
2. Hirasawa T, Ikenoyama Y and Ishioka M, et al. (2021) Current status and future perspective of artificial intelligence applications in endoscopic diagnosis and management of gastric cancer. Digestive Endoscopy, 33(2): 263-272. [
DOI:10.1111/den.13890]
3. Gao Y, Wang YC, Lu CQ, Zeng C, Chang D and Ju S (2018) Correlations between the abdominal fat-related parameters and severity of coronary artery disease assessed by computed tomography. Quantitative Imaging in Medicine and Surgery, 8(6): 579-587. [
DOI:10.21037/qims.2018.07.06]
4. Gordic S, Desbiolles L and Stolzmann P, et al. (2014) Advanced modelled iterative reconstruction for abdominal CT: qualitative and quantitative evaluation. Clinical Radiology, 69(12): e497-e504. [
DOI:10.1016/j.crad.2014.08.012]
5. Gundogdu E and Emekli E (2022) CT-based Abdominal Adipose Tissue Area Changes in Patients Undergoing Adrenalectomy Due to Cushing's Syndrome and Non-functioning Adenomas. Experimental and Clinical Endocrinology & Diabetes, 130(6): 368-373. [
DOI:10.1055/a-1547-9008]
6. van Stiphout JA, Driessen J and Koetzier LR, et al. (2022) The effect of deep learning reconstruction on abdominal CT densitometry and image quality: a systematic review and meta-analysis. European Radiology, 32(5): 2921-2929. [
DOI:10.1007/s00330-021-08438-z]
7. Schwartz FR and Alkadhi H (2023) Photon-counting detector CT for abdominal imaging: opportunities and challenges. European Radiology, 33(11): 7805-7806. [
DOI:10.1007/s00330-023-09722-w]
8. Lee MH, Lubner MG, Mellnick VM, Menias CO, Bhalla S and Pickhardt PJ (2021) The CT scout view: complementary value added to abdominal CT interpretation. Abdominal Radiology, 46(10): 5021-5036. [
DOI:10.1007/s00261-021-03135-3]
9. Choi HG, Chun W and Jung KH (2022) Association between gastric cancer and the family history of gastric cancer: a cross-sectional study using Korean Genome and Epidemiology Study data. European Journal of Cancer Prevention, 31(5): 408-414. [
DOI:10.1097/CEJ.0000000000000724]
10. Lv T, Beeharry MK and Zhu ZL (2019) Impact of intra-peritoneal fat distribution on intra-operative bleeding volume with D2 lymphadenectomy in Chinese patients with gastric cancer. Asian Journal of Surgery, 42(7): 768-774. [
DOI:10.1016/j.asjsur.2018.11.008]
11. Smyth EC, Nilsson M, Grabsch HI, van Grieken NC and Lordick F (2020) Gastric cancer. Lancet, 396(10251): 635-648. [
DOI:10.1016/S0140-6736(20)31288-5]
12. Karimi P, Islami F, Anandasabapathy S, Freedman ND and Kamangar F (2014) Gastric cancer: descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiology Biomarkers & Prevention, 23(5): 700-713. [
DOI:10.1158/1055-9965.EPI-13-1057]
13. Schwartz FR, Ashton J and Wildman-Tobriner B, et al. (2023) Liver fat quantification in photon counting CT in head to head comparison with clinical MRI - First experience. European Journal of Radiology, 161: 110734. [
DOI:10.1016/j.ejrad.2023.110734]
14. Choi MH, Choi JI and Park MY, et al. (2018) Validation of intimate correlation between visceral fat and hepatic steatosis: Quantitative measurement techniques using CT for area of fat and MR for hepatic steatosis. Clinical Nutrition, 37(1): 214-222. [
DOI:10.1016/j.clnu.2016.12.006]