[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 22, Issue 3 (7-2024) ::
Int J Radiat Res 2024, 22(3): 625-630 Back to browse issues page
Using conventional contrast-enhanced MRI semi-quantitative analysis to distinguish alpha-fetoprotein-negative small hepatocellular carcinoma without cirrhosis and small focal nodular hyperplasia
X. Zhu , Q. Feng , X. Ge , B. Hu
The Fourth Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310000, P.R.China , 478556386@qq.com
Abstract:   (797 Views)
Background: Here, we aimed to quantitatively analyze the gray scale value (GSV) of conventional triple-enhancement MRI and explore its value in differentiating non-cirrhosis, alpha-fetoprotein-negative small Hepatocellular carcinoma (SHCC) together with Focal nodular hyperplasia (SFNH). Materials and Methods: In this study, 83 cases of SHCC-related lesions were observed in 83 individuals, and an additional 35 cases of SFNH-associated lesions were examined in a group of 32 patients. These lesions were all verified through pathological assessment. The lesions’ MRI GSV of the plain scan (GSV-p) and the enhanced MRI scan (GSV-c), and normal liver parenchyma’s GSV around the lesion (GSV-n) were all quantified. Subsequently, we computed the GSV-c to GSV-n ratio (GSR), and the GSV-c to GSV-p ratio (GSRL). We employed the Wilcoxon rank sum analysis and ROC curve analysis with the aim of evaluating significance in these ratios. Results: Age and gender distribution in SHCC and SFNH exhibited relevant differences, whereas the size did not. During the phases arterial (GSRAP), portal (GSRPP), and delayed (GSRDP), the GSR and the GSRL for SHCC and SFNH demonstrated a gradual decrease, and all these changes were statistically significant. The AUC for GSRDP in SHCC and SFNH was 0.83, which surpassed the performance of other metrics. Conclusions: The GSV values obtained from a standard triple-enhancement MRI were found to be valuable in distinguishing between SHCC and SFNH, with the GSRDP showing the best performance. The precise utilization of these metrics facilitated the differentiation of SHCC and SFNH, ultimately reducing the need for unnecessary interventional procedures and associated trauma.
Keywords: Gray scale value, MRI, semi-quantitative analysis, liver cancer, hepatocytes, focal nodular hyperplasia, quantitative analysis.
Full-Text [PDF 739 kb]   (177 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. Gad MAM, Eraky TE, Omar HM, et al. (2021) Role of real-time shear-wave elastogarphy in differentiating hepatocellular carcinoma from other hepatic focal lesions. Eur J Gastroenterol Hepatol, 33(3): 407-414. [DOI:10.1097/MEG.0000000000001741]
2. Tan DJH, Ng CH, Lin SY, et al. (2022) Clinical characteristics, surveillance, treatment allocation, and outcomes of non-alcoholic fatty liver disease-related hepatocellular carcinoma: a systematic review and meta-analysis. Lancet Oncol, 23(4): 521-530. [DOI:10.1016/S1470-2045(22)00078-X]
3. Hu X, Chen R, Wei Q, et al. (2022) The Landscape of Alpha Fetoprotein In Hepatocellular Carcinoma: Where Are We? Int J Biol Sci, 18(2): 536-551. [DOI:10.7150/ijbs.64537]
4. Gainey CS, Palmer SL, Mena E, et al. (2020) Diagnosis of Focal Nodular Hyperplasia (FNH) after Liver Transplantation. Case Rep Transplant, 2020: 8824099. [DOI:10.1155/2020/8824099]
5. LeGout JD, Bolan CW, Bowman AW, et al. (2022) Focal Nodular Hyperplasia and Focal Nodular Hyperplasia-like Lesions. Radiographics, 42(4): 1043-1061. [DOI:10.1148/rg.210156]
6. Guo Y, Li W, Cai W, et al. (2017) Diagnostic Value of Gadoxetic Acid-Enhanced MR Imaging to Distinguish HCA and Its Subtype from FNH: A Systematic Review. Int J Med Sci, 14(7): 668-674. [DOI:10.7150/ijms.17865]
7. Kim JW, Lee CH, Kim SB, et al. (2017) Washout appearance in Gd-EOB-DTPA-enhanced MR imaging: A differentiating feature between hepatocellular carcinoma with paradoxical uptake on the hepatobiliary phase and focal nodular hyperplasia-like nodules. J Magn Reson Imaging, 45(6): 1599-1608. [DOI:10.1002/jmri.25493]
8. Johnson P, Zhou Q, Dao DY, et al. (2022) Circulating biomarkers in the diagnosis and management of hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol, 19(10): 670-681. [DOI:10.1038/s41575-022-00620-y]
9. Wang T and Zhang KH (2020) New Blood Biomarkers for the Diagnosis of AFP-Negative Hepatocellular Carcinoma. Front Oncol, 10: 1316. [DOI:10.3389/fonc.2020.01316]
10. Affo S, Yu LX, Schwabe RF (2017) The Role of Cancer-Associated Fibroblasts and Fibrosis in Liver Cancer. Annu Rev Pathol, 12: 153-186. [DOI:10.1146/annurev-pathol-052016-100322]
11. Perisetti A, Goyal H, Yendala R, et al. (2021) Non-cirrhotic hepatocellular carcinoma in chronic viral hepatitis: Current insights and advancements. World J Gastroenterol, 27(24): 3466-3482. [DOI:10.3748/wjg.v27.i24.3466]
12. Dong Y, Wang WP, Lee WJ, et al. (2022) Hepatocellular carcinoma in the non-cirrhotic liver. Clin Hemorheol Microcirc, 80(4): 423-436. [DOI:10.3233/CH-211309]
13. Singal AG, Tayob N, Mehta A, et al. GALAD demonstrates high sensitivity for HCC surveillance in a cohort of patients with cirrhosis. Hepatology, 75(3): 541-549. [DOI:10.1002/hep.32185]
14. Shavelle RM, Kwak JH, Saur R, et al. (2022) Life Expectancy after Liver Transplantation for Non-Cirrhotic Hepatocellular Carcinoma. Prog Transplant, 31(2): 117-125. [DOI:10.1177/15269248211002793]
15. Usman S, Smith L, Brown N, et al. (2018) Diagnostic accuracy of Magnetic Resonance Imaging using liver tissue specific contrast agents and contrast enhanced Multi Detector Computed Tomography: A systematic review of diagnostic test in Hepatocellular Carcinoma (HCC). Radiography (Lond), 24(4): e109-e114. [DOI:10.1016/j.radi.2018.05.002]
16. Wei Y, Ye Z, Yuan Y, et al. (2020) A New Diagnostic Criterion with Gadoxetic Acid-Enhanced MRI May Improve the Diagnostic Performance for Hepatocellular Carcinoma. Liver Cancer, 9(4): 414-425. [DOI:10.1159/000505696]
17. Chartampilas E, Rafailidis V, Georgopoulou V, et al. (2022) Current Imaging Diagnosis of Hepatocellular Carcinoma. Cancers (Basel), 14(16): 3997. [DOI:10.3390/cancers14163997]
18. Klauss M, Mayer P, Maier-Hein K, et al. (2016) IVIM-diffusion-MRI for the differentiation of solid benign and malign hypervascular liver Lesions-Evaluation with two different MR scanners. Eur J Radiol, 85(7): 1289-94. [DOI:10.1016/j.ejrad.2016.04.011]
19. Chen D, Liu J, Zang L, et al. (2022) Integrated Machine Learning and Bioinformatic Analyses Constructed a Novel Stemness-Related Classifier to Predict Prognosis and Immunotherapy Responses for Hepatocellular Carcinoma Patients. Int J Biol Sci, 18(1): 360-373. [DOI:10.7150/ijbs.66913]
20. Vogel A, Meyer T, Sapisochin G, et al. (2022) Hepatocellular carcinoma. Lance, 400(10360): 1345-1362. [DOI:10.1016/S0140-6736(22)01200-4]
21. Wu M, Zhou RH, Xu F, et al. (2019) Multi-parameter ultrasound based on the logistic regression model in the differential diagnosis of hepatocellular adenoma and focal nodular hyperplasia. World J Gastrointest Oncol, 11(12): 1193-1205. [DOI:10.4251/wjgo.v11.i12.1193]
22. Ge X and Zhang J (2020) CT-Value (△HU and CT-Value ratio) in Differential Diagnosis of Small Hepatocellular Carcinoma from Focal Nodular Hyperplasia. International Journal of Radiation Research, 18(4): 641-646. [DOI:10.52547/ijrr.18.4.641]
23. Kulik L, El-Serag HB (2019) Epidemiology and Management of Hepatocellular Carcinoma. Gastroenterology, 156(2): 477-491.e1. [DOI:10.1053/j.gastro.2018.08.065]
24. Bröker MEE, Taimr P, de Vries M, et al. (2020) Performance of Contrast-Enhanced Sonography Versus MRI with a Liver-Specific Contrast Agent for Diagnosis of Hepatocellular Adenoma and Focal Nodular Hyperplasia. AJR Am J Roentgenol, 214(1): 81-89. [DOI:10.2214/AJR.19.21251]
25. Lee HW and Ahn SH (2016) Prediction models of hepatocellular carcinoma development in chronic hepatitis B patients. World J Gastroenterol, 22(37): 8314-8321. [DOI:10.3748/wjg.v22.i37.8314]
26. Gatti M, Calandri M, Bergamasco L, et al. (2020) Characterization of the arterial enhancement pattern of focal liver lesions by multiple arterial phase magnetic resonance imaging: comparison between hepatocellular carcinoma and focal nodular hyperplasia. Radiol Med, 125(4): 348-355. [DOI:10.1007/s11547-019-01127-4]
27. Han LL, Lv Y, Guo H, et al. (2014) Implications of biomarkers in human hepatocellular carcinoma pathogenesis and therapy. World J Gastroenterol, 20(30): 10249-61. [DOI:10.3748/wjg.v20.i30.10249]
28. Li J, Cheng ZJ, Liu Y, et al. (2015) Serum thioredoxin is a diagnostic marker for hepatocellular carcinoma. Oncotarget, 6(11): 9551-63. [DOI:10.18632/oncotarget.3314]
29. Grandhi MS, Kim AK, Ronnekleiv-Kelly SM, et al. (2016) Hepatocellular carcinoma: From diagnosis to treatment. Surg Oncol, 25(2): 74-85. [DOI:10.1016/j.suronc.2016.03.002]
30. Luo P, Wu S, Yu Y, et al. (2019) Current Status and Perspective Biomarkers in AFP Negative HCC: Towards Screening for and Diagnosing Hepatocellular Carcinoma at an Earlier Stage. Pathol Oncol Res, 26(2): 599-603. [DOI:10.1007/s12253-019-00585-5]
31. Peng Z, Li C, Chan T, et al. (2017) Quantitative evaluation of Gd-EOB-DTPA uptake in focal liver lesions by using T1 mapping: differences between hepatocellular carcinoma, hepatic focal nodular hyperplasia and cavernous hemangioma. Oncotarget, 8(39): 65435-65444. [DOI:10.18632/oncotarget.18918]
32. Luo M, Zhang L, Jiang XH, et al. (2017) Intravoxel incoherent motion: Papplication in differentiation of hepatocellular carcinoma and focal nodular hyperplasia. Diagn Interv Radiol, 23(4): 263-271. [DOI:10.5152/dir.2017.16595]
33. Jia Y, Cai H, Wang M, et al. (2019) Diffusion Kurtosis MR Imaging versus Conventional Diffusion-Weighted Imaging for Distinguishing Hepatocellular Carcinoma from Benign Hepatic Nodules. Contrast Media Mol Imaging, l17; 2030147. [DOI:10.1155/2019/2030147]
34. Zarghampour M, Fouladi DF, Pandey A, et al. (2018) Utility of volumetric contrast-enhanced and diffusion-weighted MRI in differentiating between common primary hypervascular liver tumors. J Magn Reson Imaging, 48(4): 1080-1090. [DOI:10.1002/jmri.26032]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zhu X, Feng Q, Ge X, Hu B. Using conventional contrast-enhanced MRI semi-quantitative analysis to distinguish alpha-fetoprotein-negative small hepatocellular carcinoma without cirrhosis and small focal nodular hyperplasia. Int J Radiat Res 2024; 22 (3) :625-630
URL: http://ijrr.com/article-1-5611-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 22, Issue 3 (7-2024) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 48 queries by YEKTAWEB 4710