[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 22, Issue 3 (7-2024) ::
Int J Radiat Res 2024, 22(3): 639-646 Back to browse issues page
Factors controlling 222-Rn activity of groundwater in Jiroft plain, Iran
M. Faryabi , H.R. Mohammadi Behzad , R. Shojaheydari
Department of Ecological Engineering, Faculty of Natural Resources, University of Jiroft, Jiroft, Iran , faryabi753@yahoo.com
Abstract:   (760 Views)
Background: Radon gas concentration in water has received increasing attention due to its adverse effects on human health. Several factors affect the behavior and nature of this gas in aquatic systems. This study aimed to investigate factors governing the spatial variations of 222Rn in the groundwater of the Jiroft plain, Iran. Materials and Methods: Water samples were collected from abstraction wells to analyze 222Rn and the physicochemical properties of groundwater. 222Rn activity was measured using a RAD 7 instrument. Results: 222Rn concentration of the groundwater ranged from 5.83 to 34.55 Bq/l. The 222Rn activity was larger than the permissible limit of the United States Environmental Protection Agency in many cases. Conclusion: Hydrogeological factors, such as depth to water, bedrock situation, aquifer transmissivity, and fault activity, had a good relationship with the spatial variation of 222Rn. No significant relationship was observed between 222Rn concentration and physicochemical parameters of groundwater.
Keywords: Groundwater, 222Rn, Spatial analysis, Jiroft plain.
Full-Text [PDF 1849 kb]   (211 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. Han CH, Hong JW, Im HJ (2021) A study of 222Rn concentration of salty underground water and spring water in Jeju, Korea. J Radioanal Nucl Chem, 330: 563-569. [DOI:10.1007/s10967-021-07909-3]
2. Sukanya S, Noble J, Joseph S (2021) Factors controlling the distribution of radon (222Rn) in groundwater of a tropical mountainous river basin in southwest India. Chemosphere, https://doi.org/10.1016/j.chemosphere.2020.128096 [DOI:10.1016/j.chemosphere.2020.128096.]
3. Asadi Mohammad Abadi A, Rahimi M, Jabbari Koopaei L (2016) The effect of geological structure on radon concentration dissolved in groundwater in nearby Anar fault based on a statistical analysis. J Radioanal Nucl Chem, 308: 801-807. [DOI:10.1007/s10967-015-4581-8]
4. Malakootian M, Khashi Z, Iranmanesh F, Rahimi M (2014) Radon concentration in drinking water in villages nearby Rafsanjan fault and evaluation the annual effective dose. J Radioanal Nucl Chem, 302(3): 1167-1176. [DOI:10.1007/s10967-014-3345-1]
5. Gundersen LC (1993) The correlation between bedrock geology and indoor radon: where it works and where it doesn't-some examples from the Eastern United States. International Radon Conf. AARST, Colorado.
6. Liu H, Wang N, Chu X, Li T, Zheng L, Yan S, Li S (2016) Mapping radon hazard areas using 238U measurements and geological units: a study in a high background radiation city of China. J Radioanal Nucl Chem, 309: 1209-1215. [DOI:10.1007/s10967-016-4717-5]
7. Gorgoni C, Martinelli G, Sighinolfi GP (1982) Radon distribution in groundwater of the Po sedimentary basin (Italy). Chem Geol, 35(3-4): 297-309. [DOI:10.1016/0009-2541(82)90007-9]
8. King PT, Michel J, Moore WS (1982) Ground water geochemistry of 228Ra, 226Ra and 222Rn. Geochim Cosmochim Acta, 46: 1173-1182. [DOI:10.1016/0016-7037(82)90003-5]
9. Li C, Su H, Zhang H, zhou H (2016) Correlation between the spatial distribution of radon anomalies and fault activity in the northern margin of West Qinling Fault Zone, Central China. J Radioanal Nucl Chem, 308: 679-686. [DOI:10.1007/s10967-015-4504-8]
10. Lindsey BD and Ator SW (1996) Radon in groundwater of the lower Susquehanna and Potomac river basins. US Geological Survey water resources investigations report 96e4156, 6. https://pubs.usgs.gov/wri/1996/4156/report.pdf. Accessed 20 Jul 2022
11. Choubey VM and Ramola RC (1997) Correlation between geology and radon levels in ground water, soil and indoor air in Bhilangana Valley, Garhwal Himalaya, India. J Environ Geol, 32: 258-262. [DOI:10.1007/s002540050215]
12. Ramola RC, Choubey VM, Negi MS (2008) Radon occurrence in soil-gas and groundwater around an active landslide. Radiat Meas, 43: 98-101. [DOI:10.1016/j.radmeas.2007.05.054]
13. Tansi C, Tallarico A, Iovine G, Folino Gallo M, Falcone G (2005) Interpretation of radon anomalies in seismotectonic and tectonic-gravitational settings: the south-eastern Crati graben (Northern Calabria, Italy). Tectonophysics, 396(3-4): 181-193. [DOI:10.1016/j.tecto.2004.11.008]
14. Cook PG, Lamontagne S, Berhane D, Clark JF (2006) Quantifying groundwater discharge to Cockburn River, southeastern Australia, using dissolved gas tracers 222Rn and SF6. Water Resour Res, https://doi.org/10.1029/2006WR004921 [DOI:10.1029/2006WR004921.]
15. Thivya C, Chidambaram S, Tirumalesh K, Prasanna MV, Thilagavathi R, Nepolian M (2014) Occurrence of the radionuclides in groundwater of crystalline hard rock regions of central Tamil Nadu, India. J Radio anal Nucl Chem, 302: 1349-1355. [DOI:10.1007/s10967-014-3630-z]
16. Fouladi-Fard R, Amraei A, Fahiminia M, Hosseini MR, Mahvi AH, Omidi Oskouei A, Fiore M, Mohammadbeigi A (2020) Radon concentration and effective dose in drinking groundwater and its relationship with soil type . J Radioanal Nucl Chem, 326: 1427-1435. [DOI:10.1007/s10967-020-07424-x]
17. Duong VH, Vu HD, Nguyen DT, Pham LT, Toth G, Hegedus M, Kovacs T (2023) Seasonal 222Rn activity in spring water close to rare earth element and uranium mines in North Vietnam. J Radioanal Nucl Chem, [DOI:10.1007/s10967-023-08872-x]
18. Faryabi M (2023) A fuzzy logic approach for land subsidence susceptibility mapping: the use of hydrogeological data. Environ Earth Sci, https://doi.org/10.1007/s12665-023-10909-z [DOI:10.1007/s12665-023-10909-z.]
19. Mehrabi A (2019) Measuring the concentration of radon gas in groundwater of Jiroft plain and its relation with the region faults. J Nat Environ Hazards, 8(21): 267-282.
20. Lam RHF, Brown JP, Fan AM (1994) Chemicals in California drinking water: Source of contamination, risk assessment, and drinking water standards. In: Wang RGM, editor. Water contamination and health: Integration of exposure assessment, toxicology, and risk assessment. New York: Marcel Dekker, Inc15-44.
21. Friedmann H, Baumgartner A, Bernreiter M, Graser J, Gruber V, Kabrt F, Kaineder H, Maringer FJ, Ringer W, Seidel C, Wurm G (2017) Indoor radon, geogenic radon surrogates and geology-investigations on their correlation. J Environ Radioact, 166(2): 382-389. [DOI:10.1016/j.jenvrad.2016.04.028]
22. Hess CT, Michel J, Horton TR, Prichard HM, Coniglio WA (1985) The occurrence of radioactivity in public water supplies in the United States. Health Phys, 48(5): 553-86. [DOI:10.1097/00004032-198505000-00002]
23. Abkav-Louis Berger (1976) Ground water and agricultural feasibility study Jiroft - Minab project. Abkav-Louis Berger Consulting Engineers.
24. Przylibski TA (2011) Shallow circulation groundwater - the main type of water containing hazardous radon concentration. Nat Hazards Earth Syst Sci, 11: 1695-1703. [DOI:10.5194/nhess-11-1695-2011]
25. KRWA (2020) Report of groundwater study of Jiroft plain. Kerman Regional Water Authority
26. Ghosh D, Deb A, Sengupta R (2009) Anomalous radon emission as precursor of earthquake. J Appl Geophys, 69(2): 67-81 [DOI:10.1016/j.jappgeo.2009.06.001]
27. Lawrence E, Poeter E, Wanty R (1991) Geohydrologic, geochemical and geologic controls on the occurrence of radon in groundwater near Conifer, Colorado USA. J Hydrol, 127(1): 367-386 [DOI:10.1016/0022-1694(91)90123-Y]
28. Shafei Bafti A, Jafari HR, Shahpasandzadeh M (2009) Dynamic tectonics and earthquake hazard estimation in Sabzevaran region. Geotech Geol, 5(3): 229-238
29. El-Araby EH, Soliman HA, Abo-Elmagd M (2019) Measurement of radon levels in water and the associated health hazards in Jazan, Saudi Arabia. J Radiat Res Appl Sci, 12(1): 31-36. [DOI:10.1080/16878507.2019.1594134]
30. Kulalıa F, Akkurta I, Özgür N (2016) Investigation of the radon levels in groundwater and thermal springs of Pamukkale region. Acta Phys Pol, 130(1): 496-498. [DOI:10.12693/APhysPolA.130.496]
31. Sharma D, Keesari T, Rishi M, Thakur N, Pant D, Vasant Mohokar H, Jaryal A, Kamble SN, Kumar Sinha U (2020) Radiological and hydrological implications of dissolved radon in alluvial aquifers of western India. J Radioanal Nucl Chem, 323: 1257-1267. [DOI:10.1007/s10967-019-06619-1]
32. Rotich CK, Hashim NO, Chege MW, Nyambura C (2020) Measurement of radon activity concentration in underground water of bureti sub-county of Kericho county Kenya. Radiat Protect Dosim, 192 (1): 56-60. [DOI:10.1093/rpd/ncaa193]
33. Alabdula'aly AI (2014) Occurrence of radon in groundwater of Saudi Arabia. J Environ Radioact, 138: 186-191 [DOI:10.1016/j.jenvrad.2014.07.028]
34. Oni E, Oladapo O, Aremu A (2022) Preliminary probe of radon content in drinking water in Ibadan, south-western Nigeria. Int J Radiat Res, 20 (4): 871-877.
35. Ameho E, Kpeglo D, Glover E, Adukpo O, Sulemana A, Agalga R, Kpordzro R, Quarshie E, Hogarh JN (2023) Naturally occurring radioactive material in groundwater: potential health risk to the inhabitants at Osino in the eastern region of Ghana. Int J Radiat Res, 21(4): 779-787. [DOI:10.61186/ijrr.21.4.779]
36. Mehnati P, Doostmohammadi V, Jomehzadeh A (2022) Determination of Rn- 222 concentration and annual effective dose of inhalation in the vicinity of hot springs in Kerman province, southeastern Iran. Int J Radiat Res, 20(1): 211-216. [DOI:10.52547/ijrr.20.1.32]
37. Cho BW, Hwang JH, Lee BD Lee, Oh YH, Choo CO (2020) Radon concentrations in raw water and treated water used for bottled water in South Korea. Sustnability, 12: 5313. [DOI:10.3390/su12135313]
38. Przylibski TA and Zebrowski A (1999) Origin of radon in medicinal waters of Ladek Zdroj (Sudety Mountains, SW Poland). J Environ Radioact, 46 (1): 121-129. [DOI:10.1016/S0265-931X(98)00116-7]
39. Li C, Su H, Zhang H, Zhou H (2016) Correlation between the spatial distribution of radon anomalies and fault activity in the northern margin of West Qinling Fault Zone, Central China. J Radioanal Nucl Chem, 308: 679-686. [DOI:10.1007/s10967-015-4504-8]
40. Srilatha MC, Rangaswamy DR, Sannappa J (2014) Studies on concentration of radon and physicochemical parameters in ground water around Ramanagara and Tumkur districts, Karnataka, India. Int j adv sci tech res, 4(2): 641-660.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Faryabi M, Mohammadi Behzad H, Shojaheydari R. Factors controlling 222-Rn activity of groundwater in Jiroft plain, Iran. Int J Radiat Res 2024; 22 (3) :639-646
URL: http://ijrr.com/article-1-5613-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 22, Issue 3 (7-2024) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 48 queries by YEKTAWEB 4710