1. DeNunzio NJ and Yock TI (2020) Modern radiotherapy for pediatric brain tumors. Cancers, 12(6): 1533. [ DOI:10.3390/cancers12061533] 2. Söderström H, Brocki K, Kleberg JL, Martinsson U & Ljungman G (2022) Neurocognitive functions before and after radiotherapy in pediatric brain tumor survivors. Pediatric Neurology, 133: 21-29. [ DOI:10.1016/j.pediatrneurol.2022.05.006] 3. Lassaletta Á, Morales JS, Valenzuela PL, Esteso B, Kahalley LS, Mabbott DJ & Calvo F (2023) Neurocognitive outcomes in pediatric brain tumors after treatment with proton versus photon radiation: a systematic review and meta-analysis. World Journal of Pediatrics, 19(8): 727-740. [ DOI:10.1007/s12519-023-00726-6] 4. Rübe CE, Raid S, Palm J & Rübe C (2023) Radiation-Induced Brain Injury: Age Dependency of Neurocognitive Dysfunction Following Radiotherapy. Cancers, 15(11): 2999. [ DOI:10.3390/cancers15112999] 5. Makale MT, McDonald CR, Hattangadi-Gluth J & Kesari S (2017) Brain irradiation and long-term cognitive disability: Current concepts. Nature reviews Neurology, 13(1): 52. [ DOI:10.1038/nrneurol.2016.185] 6. Haldbo-Classen L, Amidi A, Wu LM, Lukacova S, Oettingen GV, Gottrup H & Høyer M (2019) Long-term cognitive dysfunction after radiation therapy for primary brain tumors. Acta Oncologica, 58(5): 745-752. [ DOI:10.1080/0284186X.2018.1557786] 7. Liew H, Mein S, Debus J, Dokic I & Mairani A (2020) Modeling direct and indirect action on cell survival after photon irradiation under normoxia and hypoxia. International Journal of Molecular Sciences, 21(10): 3471. [ DOI:10.3390/ijms21103471] 8. Jiao Y, Cao F & Liu H (2022) Radiation-induced cell death and its mechanisms. Health Physics, 123(5): 376-386. [ DOI:10.1097/HP.0000000000001601] 9. Wang B, Wang Y, Zhang J, Hu C, Jiang J, Li Y & Peng Z (2023) ROS-induced lipid peroxidation modulates cell death outcome: mechanisms behind apoptosis, autophagy and ferroptosis. Archives of Toxicology, 1-13. [ DOI:10.1007/s00204-023-03476-6] 10. Wang Y, Branicky R, Noë A & Hekimi S (2018) Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. Journal of Cell Biology, 217(6): 1915-1928. [ DOI:10.1083/jcb.201708007] 11. Rosa AC, Corsi D, Cavi N, Bruni N & Dosio F (2021) Superoxide dismutase administration: A review of proposed human uses. Molecules, 26(7): 1844. [ DOI:10.3390/molecules26071844] 12. Ighodaro OM & Akinloye OA (2018) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX). Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54(4): 287-293. [ DOI:10.1016/j.ajme.2017.09.001] 13. Robbins M, Greene-Schloesser D, Peiffer AM, Shaw E, Chan MD & Wheeler KT (2012) Radiation-induced brain injury: a review. Frontiers in Oncology, 2: 30551. [ DOI:10.3389/fonc.2012.00073] 14. Dong Y, Duan S, Xia Q, Liang Z, Dong X, Margaryan K, et al. (2023) Dual domestications and origin of traits in grapevine evolution. Science, 379(6635): 892-901 [ DOI:10.1126/science.add8655] 15. Adámez JD, Samino EG, Sánchez EV & González-Gómez D (2012) In vitro estimation of the antibacterial activity and antioxidant capacity of aqueous extracts from grape-seeds (Vitis vinifera L). Food Control, 24(1-2): 136-141. [ DOI:10.1016/j.foodcont.2011.09.016] 16. Di Stefano V, Buzzanc C, Melilli MG, Indelicato S, Mauro M, Vazzana M, et al. (2022) Polyphenol Characterization and Antioxidant Activity of Grape Seeds and Skins from Sicily: A Preliminary Study. Sustainability, 14(11): 6702. [ DOI:10.3390/su14116702] 17. Pozzo L, Grande T, Raffaelli A, Longo V, Weidner S, Amarowicz R, Karamać M (2023) Characterization of Antioxidant and Antimicrobial Activity and Phenolic Compound Profile of Extracts from Seeds of Different Vitis Species. Molecules, 28(13): 4924. [ DOI:10.3390/molecules28134924] 18. Zhou DD, Li J, Xiong RG, Saimaiti A, Huang SY, Wu SX, et al. (2022) Bioactive compounds, health benefits and food applications of grape. Foods, 11(18): 2755. [ DOI:10.3390/foods11182755] 19. Chengolova Z, Ivanov Y & Godjevargova T (2023) Comparison of Identification and Quantification of Polyphenolic Compounds in Skins and Seeds of Four Grape Varieties. Molecules, 28(10): 4061. [ DOI:10.3390/molecules28104061] 20. Bagchi D, Bagchi M, Stohs SJ, Das DK, Ray SD, Kuszynski CA & Pruess HG (2000) Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention. Toxicology, 148(2-3): 187-197. [ DOI:10.1016/S0300-483X(00)00210-9] 21. Castillo J, Benavente-Garcia O, Lorente J, Alcaraz M, Redondo A, Ortuno A, Del Rio JA (2000) Antioxidant activity and radioprotective effects against chromosomal damage induced in vivo by X-rays of flavan-3-ols (Procyanidins) from grape seeds (Vitis vinifera): comparative study versus other phenolic and organic compounds. Journal of Agricultural and Food Chemistry, 48(5): 1738-1745. [ DOI:10.1021/jf990665o] 22. Devi A, Jolitha AB & Ishii N (2006) Grape seed proanthocyanidin extract (GSPE) and antioxidant defense in the brain of adult rats. Medical Science Monitor. Int Med J Exp Clin Res, 12(4): BR124-9. 23. Saada HN, Said UZ, Meky NH & Azime ASAE (2009) Grape seed extract Vitis vinifera protects against radiation‐induced oxidative damage and metabolic disorders in rats. Phytotherapy Research, 23(3): 434-438 [ DOI:10.1002/ptr.2684] 24. Mureşan A, Alb C, Suciu S, Clichici S, Filip A, Login C & Mocan T (2010) Studies on antioxidant effects of the red grapes seed extract from Vitis vinifera, Burgund Mare, Recaş in pregnant rats. Acta Physiologica Hungarica, 97(2): 240-246. [ DOI:10.1556/APhysiol.97.2010.2.11] 25. Ragab GM, El-Denshary, ES, Hassan AM, Abdel-Azeim SH, Hassan NS, Mannaa FA & Abdel-Wahhab MA (2013) Grape (Vitis vinifera) seed extract inhibits the cytotoxicity and oxidative stress in liver of rats treated with carbon tetrachloride. Global Journal of Pharmacology, 7(3): 258-269. 26. Pinna C, Morazzoni P & Sala A (2017) Proanthocyanidins from Vitis vinifera inhibit oxidative stress-induced vascular impairment in pulmonary arteries from diabetic rats. Phytomedicine, 25: 39-44. [ DOI:10.1016/j.phymed.2016.12.015] 27. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2): 248-254. [ DOI:10.1016/0003-2697(76)90527-3] 28. McCord JM & Fridovich I (1969) Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). Journal of Biological Chemistry, 244(22): 6049-6055. [ DOI:10.1016/S0021-9258(18)63504-5] 29. Turnquist C, Harris BT & Harris CC (2020) Radiation-induced brain injury: current concepts and therapeutic strategies targeting neuroinflammation. Neuro-Oncology Advances, 2(1): vdaa057. [ DOI:10.1093/noajnl/vdaa057] 30. Yang X, Ren H & Fu J (2021) Treatment of radiation-induced brain necrosis. Oxidative Medicine and Cellular Longevity, 2021. [ DOI:10.1155/2021/4793517] 31. Rostom H & Shine B (2023) Basic metabolism: proteins. Surgery (Oxford), 36(4): 153-158. [ DOI:10.1016/j.mpsur.2018.01.009] 32. Bakar NFA, Othman SA, Azman NFAN & Jasrin NS (2019, June) Effect of ionizing radiation towards human health: A review. In IOP Conference Series: Earth and Environmental Science, 268 (1): p. 012005; IOP Publishing. [ DOI:10.1088/1755-1315/268/1/012005] 33. Gorgoraptis N, Zaw-Linn J, Feeney C, Tenorio-Jimenez C, Niemi M, Malik A & Sharp DJ (2019) Cognitive impairment and health-related quality of life following traumatic brain injury. NeuroRehabilitation, 44(3): 321-331. [ DOI:10.3233/NRE-182618] 34. Hshieh TT, Jung WF, Grande LJ, Chen J, Stone RM, Soiffer RJ & Abel GA (2018) Prevalence of cognitive impairment and association with survival among older patients with hematologic cancers. JAMA oncology, 4(5): 686-693. [ DOI:10.1001/jamaoncol.2017.5674] 35. Zanni G, Di Martino E, Omelyanenko A, et al. Lithium increases proliferation of hippocampal neural stem/progenitor cells and rescues irradiationinduced cell cycle arrest in vitro. Oncotarget, 2015; 6(35): 37083-37097. [ DOI:10.18632/oncotarget.5191] 36. Kale A, Piskin Ö, Bas Y, et al. Neuroprotective effects of Quercetin on radiation-induced brain injury in rats. J Radiat Res, 2018; 59(4): 404-410. [ DOI:10.1093/jrr/rry032] 37. Moore ED, Kooshki M, Metheny-Barlow LJ, Gallagher PE, Robbins ME. Angiotensin (1-7) prevents radiation-induced inflammation in rat primary astrocytes through regulation of MAP kinase signaling. Free Radic Biol Med, 2013; 65: 1060-1068. [ DOI:10.1016/j.freeradbiomed.2013.08.183] 38. Cramer CK, Alphonse-Sullivan N, Isom S, et al. Safety of pioglitazone during and after radiation therapy in patients with brain tumors: a phase I clinical trial. J Cancer Res Clin Oncol, 2019; 145(2): 337-344. [ DOI:10.1007/s00432-018-2791-5] 39. Kale A, Piskin Ö, Bas Y, et al. Neuroprotective effects of Quercetin on radiation-induced brain injury in rats. J Radiat Res, 2018; 59(4): 404-410. [ DOI:10.1093/jrr/rry032] 40. Domingos C, Pêgo JM & Santos NC (2021) Effects of physical activity on brain function and structure in older adults: A systematic review. Behavioural Brain Research, 402: 113061. [ DOI:10.1016/j.bbr.2020.113061] 41. Nasios G, Bakirtzis C & Messinis L (2020) Cognitive impairment and brain reorganization in MS: underlying mechanisms and the role of neurorehabilitation. Frontiers in Neurology, 11: 147. [ DOI:10.3389/fneur.2020.00147] 42. Zhu J, Ren Z, Chen Y, Hu B (2016) The biological effects induced by high-charged and energy particles and its application in cancer therapy. International Journal of Radiation Research, 14(1): 1. [ DOI:10.18869/acadpub.ijrr.14.1.1] 43. Zhu J, Ren Z, Chen Y & Hu B (2016) The biological effects induced by high-charged and energy particles and its application in cancer therapy. International Journal of Radiation Research, 14(1): 1. [ DOI:10.18869/acadpub.ijrr.14.1.1] 44. Cox D, Raeburn C, Sui X & Hatters DM (2020, March) Protein aggregation in cell biology: An aggregomics perspective of health and disease. Seminars in Cell & Developmental Biology, (99): 40-54. [ DOI:10.1016/j.semcdb.2018.05.003] 45. Mogensen J (2021) Animal models in neuroscience. Handbook of laboratory animal science, 591-614. [ DOI:10.1201/9780429439964-26]
|