[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 22, Issue 3 (7-2024) ::
Int J Radiat Res 2024, 22(3): 697-701 Back to browse issues page
Spread-out of Bragg peak of proton beam using Au nanoparticles: A Monte Carlo simulation study
A.S. Talebi , H. Rajabi
Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
Abstract:   (594 Views)
Background: Proton Beam Therapy (PBT) provides significantly enhanced dose distribution and dosimetric advantages compared to photon beam radiation therapy. In PBT, the Spread-Out Bragg Peak (SOBP) is crucial for achieving a conformal dose distribution within the target volume. We propose a novel method for creating SOBP by passing the beam through slabs containing varying concentrations of Au nanoparticles (NPs). Materials and Methods: GEANT4.10.6 was used for Monte Carlo tracking of proton beams within the slabs and water phantom. Various arrangements of layers containing AuNPs, with concentrations ranging from 1 to 35 M, were positioned along the path of the proton beams with an energy of 200 MeV. The most suitable arrangement of the slabs was determined based on the width of the SOBP and the dose variation in the SOBP plateau. Results: In the most suitable quintuple and sextuple arrangements of slabs, the width of the Bragg peak increases within the range of 45 to 65 mm. Furthermore, in these arrangements, variations in dose within the SOBP plateau are less than 5%. Conclusion: The arrangement of slabs with different AuNP concentrations is a stationary device placed along the beamline. This setup requires no additional time considerations and can be readily incorporated within the clinical setting.
Keywords: Bragg peak, Proton, Au nanoparticle, Monte Carlo, SOBP.
Full-Text [PDF 818 kb]   (167 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. 1. Gordon K, Gulidov I, Koryakin S, Smyk D, Makeenkova T, Gogolin D, et al. (2021) Proton therapy with a fixed beamline for skull-base chordomas and chondrosarcomas: outcomes and toxicity. Radiation Oncology, 16(1): 238. [DOI:10.1186/s13014-021-01961-9]
2. Gergelis KR, Jethwa KR, Tryggestad EJ, Ashman JB, Haddock MG, Hallemeier CL (2020) Proton beam radiotherapy for esophagus cancer: state of the art. J Thorac Dis, 12(11): 7002-10. [DOI:10.21037/jtd-2019-cptn-06]
3. Brooks ED, Ning MS, Verma V, Zhu XR, Chang JY (2019) Proton therapy for non-small cell lung cancer: the road ahead. Transl Lung Cancer Res, 8(Suppl 2): S202-S212. [DOI:10.21037/tlcr.2019.07.08]
4. Kim JK, Leeman JE, Riaz N, McBride S, Tsai CJ, Lee NY (2018) Proton Therapy for Head and Neck Cancer. Curr Treat Options Oncol, 19(6): 28. [DOI:10.1007/s11864-018-0546-9]
5. Mohan R, Peeler CR, Guan F, Bronk L, Cao W, Grosshans DR (2017) Radiobiological issues in proton therapy. Acta Oncol, 56(11): 1367-1373. [DOI:10.1080/0284186X.2017.1348621]
6. Willers H, Allen A, Grosshans D, McMahon SJ, von Neubeck C, Wiese C, et al. (2018) Toward A variable RBE for proton beam therapy. Radiother Oncol, 128(1): 68-75. [DOI:10.1016/j.radonc.2018.05.019]
7. Yuan T-Z, Zhan Z-J, Qian C-N (2019) New frontiers in proton therapy: applications in cancers. Cancer Communications, 39(1): 61. [DOI:10.1186/s40880-019-0407-3]
8. Hu M, Jiang L, Cui X, Zhang J, Yu J (2018) Proton beam therapy for cancer in the era of precision medicine. Journal of Hematology & Oncology, 11(1): 136. [DOI:10.1186/s13045-018-0683-4]
9. Jones D (1998) Present status and future trends of heavy particle radiotherapy. Cyclotrons and their Applications, 13-20.
10. Mohan R, Grosshans D (2017) Proton therapy - Present and future. Adv Drug Deliv Rev, 109: 26-44. [DOI:10.1016/j.addr.2016.11.006]
11. Romesser PB, Cahlon O, Scher E, Zhou Y, Berry SL, Rybkin A, et al. (2016) Proton beam radiation therapy results in significantly reduced toxicity compared with intensity-modulated radiation therapy for head and neck tumors that require ipsilateral radiation. Radiother Oncol, 118(2): 286-292. [DOI:10.1016/j.radonc.2015.12.008]
12. Jia SB, Romano F, Cirrone GAP, Cuttone G, Hadizadeh MH, Mowlavi AA, et al. (2016) Designing a range modulator wheel to spread-out the Bragg peak for a passive proton therapy facility. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 806: 101-108. [DOI:10.1016/j.nima.2015.10.006]
13. Newhauser W (2009) International commission on radiation units and measurements report 78: Prescribing, recording and reporting proton-beam therapy. Oxford University Press. [DOI:10.1093/rpd/ncp005]
14. Chu W, Ludewigt B, Renner T (1993) Instrumentation for treatment of cancer using proton and light‐ion beams. Review of Scientific Instruments, 64(8): 2055-2122. [DOI:10.1063/1.1143946]
15. Kraft G (2000) Tumor therapy with heavy charged particles. Progress in Particle and Nuclear Physics, 45: S473-S544. [DOI:10.1016/S0146-6410(00)00112-5]
16. Kanai T, Kawachi K, Kumamoto Y, Ogawa H, Yamada T, Matsuzawa H, et al. (1980) Spot scanning system for proton radiotherapy. Med Phys, 7(4): 365-369. [DOI:10.1118/1.594693]
17. Bourhaleb F, Attili A, Russo G (2011) Monte carlo simulations for beam delivery line design in radiation therapy with heavy ion beams. Applications of Monte Carlo Methods in Biology, Medicine and Other Fields of Science. [DOI:10.5772/15883]
18. Abbasi Kajani A, Haghjooy Javanmard S, Asadnia M, Razmjou A (2021) Recent Advances in Nanomaterials Development for Nanomedicine and Cancer. ACS Appl Bio Mater, 4(8): 5908-5925. [DOI:10.1021/acsabm.1c00591]
19. Abdel-Mageed HM, AbuelEzz NZ, Radwan RA, Mohamed SA (2021) Nanoparticles in nanomedicine: a comprehensive updated review on current status, challenges and emerging opportunities. J Microencapsul, 38(6): 414-436. [DOI:10.1080/02652048.2021.1942275]
20. Medici S, Peana M, Coradduzza D, Zoroddu MA (2021) Gold nanoparticles and cancer: Detection, diagnosis and therapy. Semin Cancer Biol, 76: 27-37. [DOI:10.1016/j.semcancer.2021.06.017]
21. Talebi AS, Rajabi H, Watabe H (2022) Role of nanoparticles in transarterial radioembolization with glass microspheres. Annals of Nuclear Medicine, 36(5): 479-487. [DOI:10.1007/s12149-022-01727-7]
22. Agostinelli S, Allison J, Amako Ka, Apostolakis J, Araujo H, Arce P, et al. (2003) GEANT4-a simulation toolkit. Nuclear instruments and methods in physics research section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3): 250-303. [DOI:10.1016/S0168-9002(03)01368-8]
23. Hamad MK (2021) Bragg-curve simulation of carbon-ion beams for particle-therapy applications: A study with the GEANT4 toolkit. Nuclear Engineering and Technology, 53(8): 2767-2773. [DOI:10.1016/j.net.2021.02.011]
24. Wilson RR (1946) Radiological Use of Fast Protons. Radiology, 47(5): 487-491. [DOI:10.1148/47.5.487]
25. Lawrence JH (1957) Proton irradiation of the pituitary. Cancer, 10(4): 795-798. https://doi.org/10.1002/1097-0142(195707/08)10:4<795::AID-CNCR2820100426>3.0.CO;2-B [DOI:10.1002/1097-0142(195707/08)10:43.0.CO;2-B]
26. Shao W, Tang X, Geng C, Shu D, Gong C, Zhang X, et al. (2020) Investigation of irregular radiation field-based proton therapy using conformal dose layer stacking method. International Journal of Radiation Research, 18(2): 295-306.
Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Talebi A, Rajabi H. Spread-out of Bragg peak of proton beam using Au nanoparticles: A Monte Carlo simulation study. Int J Radiat Res 2024; 22 (3) :697-701
URL: http://ijrr.com/article-1-5637-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 22, Issue 3 (7-2024) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.09 seconds with 50 queries by YEKTAWEB 4704