|
Wang L, Tian G, Zhang H, Chen J, Sun Z, Guo F et al . Prognostic value of CT perfusion imaging, serum D-D and MMP-9 on hemorrhage transformation after thrombolysis in patients with acute cerebral infarction. Int J Radiat Res 2024; 22 (3) :711-717 URL: http://ijrr.com/article-1-5653-en.html
Department of Imaging Diagnosis, Inner Mongolia Medical University Affiliated Hospital, Hohhot, China , shenjie_319@126.com
Abstract: (1054 Views)
Background: This study explores the predictive value of Computerized Tomography (CT) perfusion imaging, serum D-dimer (D-D), and serum matrix metalloproteinase-9 (MMP-9) levels for hemorrhagic transformation (HT) in patients with acute cerebral infarction post-thrombolysis. Materials and Methods: Patients with acute cerebral infarction who underwent thrombolytic therapy from February 2021 to February 2022 were included. CT perfusion imaging was conducted within a week post-operation. The study compared CT perfusion parameters and serum markers, analyzing differences and conducting univariate and multivariate analyses to explore their predictive value for HT. Results: No significant differences were found in hypertension, hyperlipidemia, stroke history, mean arterial pressure, fasting blood glucose, and platelet count pre-thrombolysis (P > 0.05). However, infarct diameter ≥ 5 cm and atrial fibrillation were more common in the study group, with higher pre-thrombolysis National Institutes of Health Stroke Scale (NIHSS) score, D-D, and MMP-9 levels (P < 0.05). CT perfusion showed lower relative cerebral blood volume (rCBV, relative cerebral blood flow (rCBF, and higher relative mean transit time (rMTT), relative time to peak (rTTP) in the study group (P < 0.05). D-D and MMP-9 levels were negatively correlated with rCBV, rCBF, and positively with rTTP, CTP integration index (P < 0.05). Conclusion: CT perfusion imaging, serum D-D, and MMP-9 levels are effective predictors of hemorrhagic transformation in acute cerebral infarction patients post-thrombolysis. These findings are valuable for guiding clinical treatment and monitoring.
References
1. Zhang XX, Yao FR, Zhu JH, et al. (2022) Nomogram to predict haemorrhagic transformation after stroke thrombolysis: a combined brain imaging and clinical study. Clinical Radiology, 77(1): e92-e98. [ DOI:10.1016/j.crad.2022.09.028] 2. Yu X, Pan J, Zhao X, Hou Q, Liu B (2022) Predicting hemorrhagic transformation after thrombectomy in acute ischemic stroke: a multimodal score of the regional pial collateral. Neuroradiology, 64(3): 493-502. [ DOI:10.1007/s00234-021-02795-8] 3. Ni H, Lu, Hang Y, et al. (2023) Association between Infarct Location and Hemorrhagic Transformation of Acute Ischemic Stroke following Successful Recanalization after Mechanical Thrombectomy. American Journal of Neuroradiology, 44(1): 54-59. [ DOI:10.3174/ajnr.A7742] 4. Elsaid N, Bigliardi G, Dell'Acqua ML, et al. (2023) Proposal of multimodal computed tomography-based scoring system in prediction of hemorrhagic transformation in acute ischemic stroke. Acta Neurologica Belgica, 123(4): 1405-1411. [ DOI:10.1007/s13760-023-02239-5] 5. Xu J, Dai F, Wang B, et al. (2023) Predictive Value of CT Perfusion in Hemorrhagic Transformation after Acute Ischemic Stroke: A Systematic Review and Meta-Analysis. Brain Sciences, 13(1): 156. [ DOI:10.3390/brainsci13010156] 6. Han S, Huang R, Yao F, et al. (2022) Pre-treatment spectral CT combined with CT perfusion can predict hemorrhagic transformation after thrombolysis in patients with acute ischemic stroke. European Journal of Radiology, 156: 110543. [ DOI:10.1016/j.ejrad.2022.110543] 7. Jain AR, Jain M, Kanthala AR, et al. (2013) Association of CT perfusion parameters with hemorrhagic transformation in acute ischemic stroke. American Journal of Neuroradiology, 34(10): 1895-1900. [ DOI:10.3174/ajnr.A3502] 8. Biesbroek JM, Niesten JM, Dankbaar JW, et al. (2013) Diagnostic accuracy of CT perfusion imaging for detecting acute ischemic stroke: a systematic review and meta-analysis. Cerebrovascular Diseases, 35(6): 493-501. [ DOI:10.1159/000350200] 9. Li X, Liu H, Zeng W, et al. (2020) The Value of Whole-Brain Perfusion Parameters Combined with Multiphase Computed Tomography Angiography in Predicting Hemorrhagic Transformation in Ischemic Stroke. Journal of Stroke & Cerebrovascular Diseases, 29(4): 104690. [ DOI:10.1016/j.jstrokecerebrovasdis.2020.104690] 10. Zoller B, Sundquist J, Sundquist K, Ohlsson H (2024) The risk for venous thromboembolism and cardiometabolic disorders in offspring from thrombosis-prone pedigrees. Journal of Thrombosis and Haemostasis: 22(3): 775-784. [ DOI:10.1016/j.jtha.2023.11.024] 11. Ling C, Cao S, Kong X (2022) Changes of FSTL1 and MMP-9 levels in patients with acute cerebral infarction and its relationship with hemorrhagic transformation. Journal of Clinical Neuroscience, 99: 164-168. [ DOI:10.1016/j.jocn.2021.10.041] 12. Li C, Hao X, Lin L, et al. (2021) Prognostic Value of a New Integrated Parameter-Both Collateral Circulation and Permeability Surface-in Hemorrhagic Transformation of Middle Cerebral Artery Occlusion Acute Ischemic Stroke: Retrospective Cohort Study. Frontiers in Aging Neuroscience, 13: 703734. [ DOI:10.3389/fnagi.2021.703734] 13. Fan H, Wei L, Zhao X, et al. (2023) White matter hyperintensity burden and functional outcomes in acute ischemic stroke patients after mechanical thrombectomy: A systematic review and meta-analysis. Neuroimage-Clinical, 41: 103549. [ DOI:10.1016/j.nicl.2023.103549] 14. Shafique MA, Ali S, Mustafa MS, et al. (2023) Meta-analysis of direct endovascular thrombectomy vs bridging therapy in the management of acute ischemic stroke with large vessel occlusion. Clinical Neurology and Neurosurgery, 236: 108070. [ DOI:10.1016/j.clineuro.2023.108070] 15. Fu Y, Zheng S, Kong H, et al. (2022) Clinical Value of Combined Detection of UA and MMP-9 in Evaluating Bleeding Transformation and Prognosis After Thrombolysis in Acute Cerebral Infarction. Applied Biochemistry and Biotechnology, 194(11): 5236-5254. [ DOI:10.1007/s12010-022-03990-w] 16. Laskowitz DT, Troy J, Poehlein E, et al. (2024) A Randomized, Placebo-Controlled, Phase II Trial of Intravenous Allogeneic Non-HLA Matched, Unrelated Donor, Cord Blood Infusion for Ischemic Stroke. Stem Cells Translational Medicine: 13(2):125-136. [ DOI:10.1093/stcltm/szad080] 17. Fu Y, Zheng S, Kong H, et al. (2022) Clinical Value of Combined Detection of UA and MMP-9 in Evaluating Bleeding Transformation and Prognosis After Thrombolysis in Acute Cerebral Infarction. Applied Biochemistry and Biotechnology, 194(11): 5236-5254. [ DOI:10.1007/s12010-022-03990-w] 18. Xu Y, Hu Y, Wu G, et al. (2023) Specific inhibition on PAI-1 reduces the dose of Alteplase for ischemic stroke treatment. International Journal of Biological Macromolecules: 128618. [ DOI:10.1016/j.ijbiomac.2023.128618] 19. Kim JE, Lee RP, Yazigi E, et al. (2023) Soluble PD-L1 reprograms blood monocytes to prevent cerebral edema and facilitate recovery after ischemic stroke. Brain Behavior and Immunity, 116: 160-174. [ DOI:10.1016/j.bbi.2023.12.007] 20. Wilson JL, Waak M, Barry M, Jordan LC, Sun LR (2023) Tenecteplase in Pediatric Stroke: Ready or Not. Pediatric Neurology, 151: 17-20. [ DOI:10.1016/j.pediatrneurol.2023.11.003] 21. Bellam KG, Sabe SA, Chalasani N, et al. (2023) Association Between Marijuana Use and Clinical Outcomes After Coronary Artery Bypass Grafting. Journal of Surgical Research, 295: 442-448. [ DOI:10.1016/j.jss.2023.11.015] 22. Nam KW, Kim CK, Yu S, et al. (2023) Corrigendum to "D-dimer to fibrinogen ratio predicts early neurological deterioration in ischemic stroke with atrial fibrillation" [Thromb. Res. 229 (2023) 219-224]. Thrombosis Research, 233: 173. [ DOI:10.1016/j.thromres.2023.11.001] 23. Yin P, Wu Y, Long X, et al. (2023) HACE1 expression in heart failure patients might promote mitochondrial oxidative stress and ferroptosis by targeting NRF2. Aging (Albany Ny), 15(23): 13888-13900. [ DOI:10.18632/aging.205272]
|