[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 22, Issue 3 (7-2024) ::
Int J Radiat Res 2024, 22(3): 739-748 Back to browse issues page
Cytotoxic effects of chloridazon-loaded alginate-chitosan nanocapsules on the 4T1 breast cancer cell line.
S. Babaei , D. Kahrizi , N. Karimi , I. Nosratti , E. Arkan , S. Ercişli , M.B. Tahir
Agricultural Biotechnology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran , dkahrizi@modares.ac.ir
Abstract:   (733 Views)
Background: Chloridazon belongs to the pyridazinone group of herbicides. Pyridazinone derivatives are known to have various pharmacological activities, including anti-cancer effects. Therefore, our study aimed to assess the cytotoxicity, apoptotic, anti-metastasis, and anti-angiogenesis effects of chloridazon-loaded alginate-chitosan nanocapsules on the 4T1 breast cancer cell line. Materials and Methods: The 4T1 cell line was cultured in RPMI 1640 media and treated with different concentrations of chloridazon-loaded alginate-chitosan nanocapsules. Cell viability was evaluated using the MTT assay, while cell vitality was assessed using the NR uptake assay. Apoptosis was induced and observed through acridine orange and propidium iodide staining. Furthermore, the expression levels of genes associated with metastasis (MMP-2 & MMP-9) and angiogenesis (VEGF-A) were analyzed using the RT-PCR technique. Results: The chloridazon-loaded nanocapsules displayed increased cytotoxicity on the 4T1 cell line in a dose-dependent manner. As the treatment dose increased, both cell viability and vitality decreased. The IC50 of the nanoformulation was measured as 74 μg/ml based on the dose-response curve. Additionally, the nanoformulation was found to induce apoptosis and decrease the expression levels of genes related to metastasis (MMP-2 & MMP-9) and angiogenesis (VEGF-A). Notably, the doses of 100 μg/ml and 160 μg/ml of the nanoformulation exhibited the most significant effects. Conclusion: Our findings reveal that the chloridazon-loaded alginate-chitosan nanocapsules have the potential to exert cytotoxic effects on the 4T1 breast cancer cell line.
Keywords: Alginate-Chitosan Nanocapsule, Chloridazon, Pyridazinone, Cytotoxicity.
Full-Text [PDF 921 kb]   (221 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. Bhandari M, Nguyen S, Yazdani M, et al. (2022) The Therapeutic Benefits of Nanoencapsulation in Drug Delivery to the Anterior Segment of the Eye: A Systematic Review. Front Pharmacol, 13: 903519. [DOI:10.3389/fphar.2022.903519]
2. Chenthamara D, Subramaniam S, Ramakrishnan SG, et al. (2019) Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res, 23: 20. [DOI:10.1186/s40824-019-0166-x]
3. Patra JK, Das G, Fraceto LF, et al. (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol, 16: 71. [DOI:10.1186/s12951-018-0392-8]
4. Montané X, Bajek A, Roszkowski K, et al. (2020) Encapsulation for Cancer Therapy. Molecules, 25(7): 1605. [DOI:10.3390/molecules25071605]
5. Kirtane AR, Verma M, Karandikar P, et al. (2021) Nanotechnology approaches for global infectious diseases. Nat Nanotechnol, 16: 369-384. [DOI:10.1038/s41565-021-00866-8]
6. Brar B, Marwaha S, Poonia AK, et al. (2023) Nanotechnology: a contemporary therapeutic approach in combating infections from multidrug-resistant bacteria. Arch Microbiol, 205: 62. [DOI:10.1007/s00203-023-03404-3]
7. Zhou L, Zou M, Xu Y, et al. (2022) Nano Drug Delivery System for Tumor Immunotherapy: Next-Generation Therapeutics. Front Oncol, 12: 864301. [DOI:10.3389/fonc.2022.864301]
8. Peer D, Karp JM, Hong S, et al. (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol, 2(12): 751-760. [DOI:10.1038/nnano.2007.387]
9. Brotons CA, Urueña CP, Imbuluzqueta I, et al. (2023) Encapsulated Phytomedicines against Cancer: Overcoming the "Valley of Death". Int J Pharm, 15(4): 1038. [DOI:10.3390/pharmaceutics15041038]
10. Janrao C, Khopade S, Bavaskar A, et al. (2023) Recent advances of polymer based nanosystems in cancer management. J Biomater Sci Polym Ed, 2: 1-62. [DOI:10.1080/09205063.2022.2161780]
11. He L, Shang Z, Liu H, et al. (2020) Alginate-Based Platforms for Cancer-Targeted Drug Delivery. Biomed Res Int, 7:1487259. [DOI:10.1155/2020/1487259]
12. Sosnik A (2014) Alginate Particles as Platform for Drug Delivery by the Oral Route: State-of-the-Art. ISRN Pharm, 2014: 926157. [DOI:10.1155/2014/926157]
13. Imam SS, Alshehri S, Ghoneim MM, et al. (2021) Recent Advancement in Chitosan-Based Nanoparticles for Improved Oral Bioavailability and Bioactivity of Phytochemicals: Challenges and Perspectives. Polymers (Basel), 13(22): 4036. [DOI:10.3390/polym13224036]
14. Mikušová V, Mikuš P (2021) Advances in Chitosan-Based Nanoparticles for Drug Delivery. Int J Mol Sci, 22(17): 9652. [DOI:10.3390/ijms22179652]
15. Deng S, Gigliobianco MR, Censi R, et al. (2020) Polymeric Nanocapsules as Nanotechnological Alternative for Drug Delivery System: Current Status, Challenges and Opportunities. Nanomaterials (Basel), 10(5): 847. [DOI:10.3390/nano10050847]
16. Flores‐Céspedes F, Daza-Fernández I, Villafranca‐Sánchez M, et al. (2018) Lignin and ethylcellulose in controlled release formulations to reduce leaching of chloridazon and metribuzin in light-textured soils. J Hazard Mater, 1(343): 227-34. [DOI:10.1016/j.jhazmat.2017.09.012]
17. Šiviková K, Dianovský J, Piešová E (1999) Chromosome Damage In Cultured Bovine Peripheral Lymphocytes Induced By Herbicide Chloridazon. ACTA VET BRNO, 68: 105-110. [DOI:10.2754/avb199968020105]
18. National Center for Biotechnology Information. PubChem Compound Summary for CID 15546, Chloridazon. [Internet]. PubChem: [Retrieved December 11, 2023]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Chloridazon.
19. Dubey S, Bhosle PA (2015) Pyridazinone: an important element of pharmacophore possessing broad spectrum of activity. Med Chem Res, 24: 3579-3598. [DOI:10.1007/s00044-015-1398-5]
20. Gong J, Zheng Y, Wang Y, et al. (2018) A new compound of thiophenylated pyridazinone IMB5043 showing potent antitumor efficacy through ATM-Chk2 pathway. PLoS One, 13(2): e0191984. [DOI:10.1371/journal.pone.0191984]
21. Sonker P, Singh M, Nidhar M, et al. (2022) Novel pyrimido-pyridazine derivatives: design, synthesis, anticancer evaluation and in silico studies. Future Med Chem, 14(23): 1693-704. [DOI:10.4155/fmc-2022-0199]
22. Özdemir Z, Utku S, Mathew B, et al. (2020) Synthesis and biological evaluation of new 3(2H)-pyridazinone derivatives as non-toxic anti-proliferative compounds against human colon carcinoma HCT116 cells. J Enzyme Inhib Med Chem, 35(1): 1100-1109. [DOI:10.1080/14756366.2020.1755670]
23. IG Rathish, Javed K, Ahmad Sh, et al. (2012) Synthesis and evaluation of anticancer activity of some novel 6-aryl-2-(p-sulfamylphenyl)-pyridazin-3(2H)-ones. Eur J Med Chem, 49: 304-30. [DOI:10.1016/j.ejmech.2012.01.026]
24. Babaei S, Kahrizi D, Nosratti I, et al. (2022) Preparation and characterization of chloridazon-loaded alginate/chitosan nanocapsules: chloridazon - loaded alginate/chitosan nanocapsules. Cell Mol Biol, 68(3): 34-42. [DOI:10.14715/cmb/2022.68.3.5]
25. Rahmani Kukia N, Abbasi A, Froushani S, et al. (2020) The effects of 17 Beta-Estradiol primed mesenchymal stem cells on the biology of co-cultured neutrophil. Int Immunopharmacol, 84: 106602. [DOI:10.1016/j.intimp.2020.106602]
26. Rahman Kukia N, Rasmi Y, Abbasi A, et al. (2018) Bioeffects of TiO2 nanoparticles on human colorectal cancer and umbilical vein endothelial cell lines. APJCP, 19(10): 2821.
27. McMillan J, Batrakova E (2011) Cell delivery of therapeutic nanoparticles. Prog Mol Biol Transl Sci, 104: 563-601. [DOI:10.1016/B978-0-12-416020-0.00014-0]
28. Desai MP and Labhasetwar V (1997) The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res, 14: 1568-1573. [DOI:10.1023/A:1012126301290]
29. Clarke S (2013) Development of hierarchical magnetic nanocomposite materials for biomedical applications. PhD thesis, Dublin City University. Available from: https://doras.dcu.ie/19392/
30. Chen Q, Li X, Xie Y, et al. (2021) Alginate-azo/chitosan nanocapsules in vitro drug delivery for hepatic carcinoma cells: UV-stimulated decomposition and drug release based on trans-to-cis isomerization. Int J Biol Macromol, 30(187): 214-222. [DOI:10.1016/j.ijbiomac.2021.07.119]
31. De Castro Jorge Silva A, Remirão MH, Lucas CG, et al. (2017) Effects of chitosan-coated lipid-core nanocapsules on bovine sperm cells. Toxicol In Vitro, 40: 214-222. [DOI:10.1016/j.tiv.2017.01.017]
32. Shamekhi F, Tamjid E, Khajeh K (2010) Development of chitosan coated calcium-alginate nanocapsules for oral delivery of liraglutide to diabetic patients. Int J Biol Macromol, 120(A): 460-467. [DOI:10.1016/j.ijbiomac.2018.08.078]
33. Rivera MC, Pinheiro AC, Bourbon AI, et al. (2015) Hollow chitosan/alginate nanocapsules for bioactive compound delivery. Int J Biol Macromol, 79: 95-102. [DOI:10.1016/j.ijbiomac.2015.03.003]
34. Pamela V, Howard M, Stephen D, et al. (2002) Evaluation of the biocompatibility of a chitosan scaffold in mice. J Biomed Mater Res, 59: 585-90. [DOI:10.1002/jbm.1270]
35. Kushwaha K, Dwivedi H (2018) Interfacial Phenomenon Based Biocompatible Alginate-Chitosan Nanoparticles Containing Isoniazid and Pyrazinamide. Pharm Nanotechnol, 6(3): 209-217. [DOI:10.2174/2211738506666180625120038]
36. Bagre AP, Jain K, Jain NK (2013) Alginate coated chitosan core shell nanoparticles for oral delivery of enoxaparin: in vitro and in vivo assessment. Int J Pharm, 456(1): 31-40. [DOI:10.1016/j.ijpharm.2013.08.037]
37. Liu P and Zhao X (2013) Facile preparation of well-defined near-monodisperse chitosan/sodium alginate polyelectrolyte complex nanoparticles (CS/SAL NPs) via ionotropic gelification: a suitable technique for drug delivery systems. Biotechnol J, 8(7): 847-54. [DOI:10.1002/biot.201300093]
38. Zohri M, Akbari Javar H, Gazori T, et al. Response Surface Methodology for Statistical Optimization of Chitosan/Alginate Nanoparticles as a Vehicle for Recombinant Human Bone Morphogenetic Protein-2 Delivery. Int J Nanomedicine, 15: 8345-8356. [DOI:10.2147/IJN.S250630]
39. Aluani D, Tzankova V, Kondeva Burdina M, et al. (2017) Еvaluation of biocompatibility and antioxidant efficiency of chitosan-alginate nanoparticles loaded with quercetin. Int J Biol Macromol, 103: 771-782. [DOI:10.1016/j.ijbiomac.2017.05.062]
40. Takka S, Gürel A (2010) Evaluation of chitosan/alginate beads using experimental design: formulation and in vitro characterization. AAPS PharmSciTech, 11(1): 460-6. [DOI:10.1208/s12249-010-9406-z]
41. Li Q, Dunn ET, Grandmaison EW, et al. (1992) Applications and Properties of Chitosan. Bioact Compat Polym, 7(4): 370-97. [DOI:10.1177/088391159200700406]
42. Rinaudo M (2008) Main properties and current applications of some polysaccharides as biomaterials. Polym Int, 57: 397-430. [DOI:10.1002/pi.2378]
43. Li X, Kong X, Shi S, et al. (2008) Preparation of alginate coated chitosan microparticles for vaccine delivery. BMC Biotechnol, 8: 89. [DOI:10.1186/1472-6750-8-89]
44. Bahreini E, Aghaiypour K, Abbasalipourkabir R, et al. (2014) Preparation and nanoencapsulation of l-asparaginase II in chitosan-tripolyphosphate nanoparticles and in vitro release study. Nanoscale Res Lett, 9(1): 340. [DOI:10.1186/1556-276X-9-340]
45. Li S, Zhang H, Chen K, et al. (2022) Application of chitosan/alginate nanoparticle in oral drug delivery systems: prospects and challenges. Drug Deliv, 29(1): 1142-1149. [DOI:10.1080/10717544.2022.2058646]
46. Hamman JH (2010) Chitosan Based Polyelectrolyte Complexes as Potential Carrier Materials in Drug Delivery Systems. Marine Drugs, 8(4): 1305-1322. [DOI:10.3390/md8041305]
47. Sabt A, Eldehna WM, Al Warhi T, et al. (2020) Discovery of 3,6-disubstituted pyridazines as a novel class of anticancer agents targeting cyclin-dependent kinase 2: synthesis, biological evaluation and in silico insights. J Enzyme Inhib Med Chem, 35(1): 1616-1630. [DOI:10.1080/14756366.2020.1806259]
48. Barberot C, Moniot A, Allart Simon I, et al. (2018) Synthesis and biological evaluation of pyridazinone derivatives as potential anti-inflammatory agents. Eur J Med Chem, 146: 139-146. [DOI:10.1016/j.ejmech.2018.01.035]
49. Ahmed MF, Santali EY, Mohi El Deen EM, et al. (2021) Development of pyridazine derivatives as potential EGFR inhibitors and apoptosis inducers: Design, synthesis, anticancer evaluation, and molecular modeling studies. Bioorg Chem, 106: 104473. [DOI:10.1016/j.bioorg.2020.104473]
50. Singh J, Kumar V, Silakari P, et al. (2022) Pyridazinones: A versatile scaffold in the development of potential target-based novel anticancer agents. J Heterocycl Chem, 60(6): 929-49. [DOI:10.1002/jhet.4589]
51. Özdemir Z, Alagöz MA, Arslan G, et al. (2022) Pharmacologically Active Molecules Bearing the Pyridazinone Ring as Main Scaffold. GUHES, 4(2): 61-79.
52. Murineddu G, Cignarella G, Chelucci G, et al. (2002) Synthesis and cytotoxic activities of pyrrole[23-d]pyridazin-4-one derivatives. Chem Pharm Bull, 50: 754-765. [DOI:10.1248/cpb.50.754]
53. Gutierrez DA, DeJesus RE, Contreras L, et al. (2019) A new pyridazinone exhibits potent cytotoxicity on human cancer cells via apoptosis and poly-ubiquitinated protein accumulation. Cell Biol Toxicol, 35(6): 503-519. [DOI:10.1007/s10565-019-09466-8]
54. Aykul S, Martinez Hackert E (2016) Determination of half-maximal inhibitory concentration using biosensor-based protein interaction analysis. Anal Biochem, 508: 97-103. [DOI:10.1016/j.ab.2016.06.025]
55. Priani SE, Setianty TN, Aryani R, et al. (2021) Development of Nanocapsules Containing Cytotoxic Agents: A Review. J Farmasi Galenika, 7(2): 151-165. [DOI:10.22487/j24428744.2021.v7.i2.15578]
56. Ahmadia F, Jamalia N, Jahangard Yektaa S, et al. (2011) The experimental and theoretical QM/MM study of interaction of chloridazon herbicide with ds-DNA. Spectrochimica Acta Part A, 79: 1004- 1012. [DOI:10.1016/j.saa.2011.04.012]
57. Suwalsky M, Benites M, Villena F, et al. The organochlorine herbicide chloridazon interacts with cell membranes. CBP Part C, 120: 29-35. [DOI:10.1016/S0742-8413(98)90002-0]
58. Zhou T, Zhou M, Tong C & Zhuo M (2022). Cauliflower bioactive compound sulforaphane inhibits breast cancer development by suppressing NF-κB /MMP-9 signaling pathway expression: Suppressing NF-κB /MMP-9 signaling with sulforaphane. Cellular and Molecular Biology, 68(4), 134-143. https://doi.org/10.14715/cmb/2022.68.4.17 [DOI:10.14715/cmb/2022.68.4.17.]
59. Cheng H, Chen L, Fang Z, Wan Q, Du Z, Ma N, Guo G & Lu W (2022). The effect of miR-138 on the proliferation and apoptosis of breast cancer cells through the NF-κB/VEGF signaling pathway: Effect of miR-138 on breast cancer cells. Cellular and Molecular Biology, 68(2), 132-137. https://doi.org/10.14715/cmb/2022.68.2.19 [DOI:10.14715/cmb/2022.68.2.19.]
60. Zhang Y, Yuan J, Zhang Q, Yan J, Ju S & Yang Y (2022). Nano-lipid Contrast Agent Combined with Ultrasound-Guided SGB in Nursing Treatment of Lymphedema after Breast Cancer Surgery: Nano-lipid Contrast Agent Combined with Ultrasound-Guided SGB. Cellular and Molecular Biology, 68(3), 189-201. https://doi.org/10.14715/cmb/2022.68.3.22 [DOI:10.14715/cmb/2022.68.3.22.]
61. Lin J, Ding Q, Zhang G & Yin X (2022). Study on PI3k gene expression in breast cancer samples and its association with clinical factors and patient survival. Cellular and Molecular Biology, 67(4), 321-327. https://doi.org/10.14715/cmb/2021.67.4.36 [DOI:10.14715/cmb/2021.67.4.36.]
62. Wang D, Wang C, Sun L, Lu X, Shi J, Chen J & Zhang X (2022). MiR-143-3p Increases the Radiosensitivity of Breast Cancer Cells Through FGF1. Cellular and Molecular Biology, 67(5), 256-262. https://doi.org/10.14715/cmb/2021.67.5.35 [DOI:10.14715/cmb/2021.67.5.35.]
63. Xin L & Zhiyuan X (2022). Evaluating serum level of granulocyte, macrophage and granulocyte-macrophage colony-stimulating factors in patients with breast tumor: Serum level of G-CSF, M-CSF, and GM-CSF in breast tumor. Cellular and Molecular Biology, 68(5), 146-152. https://doi.org/10.14715/cmb/2022.68.5.20 [DOI:10.14715/cmb/2022.68.5.20.]
64. Lin R, Guan Z, Zhou Q, Zhong J, Zheng C & Zhang Z (2022). Effects of 7,12-Dimethylbenz(a)anthracene on Apoptosis of Breast Cancer Cells through Regulating Expressions of FasL and Bcl-2. Cellular and Molecular Biology, 68(1), 201-208. https://doi.org/10.14715/cmb/2022.68.1.24 [DOI:10.14715/cmb/2022.68.1.24.]
65. Majed SO (2022). RNA Sequencing-Based Total RNA Profiling; The Oncogenic MiR-191 Identification as a Novel Biomarker for Breast Cancer. Cellular and Molecular Biology, 68(1), 177-191. https://doi.org/10.14715/cmb/2022.68.1.22 [DOI:10.14715/cmb/2022.68.1.22.]
66. Çetin İdil & Topçul M (2022). Investigation of the Effects of the Endogenous Cannabinoid Anandamide on Luminal A Breast Cancer Cell Line MCF-7: Effects of the Endogenous Cannabinoid. Cellular and Molecular Biology, 68(4), 129-133. https://doi.org/10.14715/cmb/2022.68.4.16 [DOI:10.14715/cmb/2022.68.4.16.]
67. Chang C, Shang Y, Gao Y, Shang M, Wang L & Li H (2022). Clinical features, treatment, and prognosis of 16 breast cancer patients with ocular metastases. Cellular and Molecular Biology, 67(5), 363-370. https://doi.org/10.14715/cmb/2021.67.5.49 [DOI:10.14715/cmb/2021.67.5.49.]
68. Wen R, Lin H, Li X, Lai X & Yang F (2022). The Regulatory Mechanism of EpCAM N-Glycosylation-Mediated MAPK and PI3K/Akt Pathways on Epithelial-Mesenchymal Transition in Breast Cancer Cells: EpCAM N-Glycosylation and PI3K/Akt Pathways on Breast Cancer Cells. Cellular and Molecular Biology, 68(5), 192-201. https://doi.org/10.14715/cmb/2022.68.5.26 [DOI:10.14715/cmb/2022.68.5.26.]
69. Cheng H, Chen L, Fang Z, Wan Q, Du Z, Ma N, Guo G & Lu W (2022). STIM2 promotes the invasion and metastasis of breast cancer cells through the NFAT1/TGF-β1 pathway. Cellular and Molecular Biology, 67(6), 55-61. https://doi.org/10.14715/cmb/2021.67.6.8 [DOI:10.14715/cmb/2021.67.6.8.]
70. Li X, Fu H, Li P, L, Y, Li W & Zhu F (2022). Nano Carbon Tracing-based Treatment of Breast Cancer Lymphadenectomy and Nursing Intervention of Postoperative Lymphedema. Cellular and Molecular Biology, 68(3), 304-313. https://doi.org/10.14715/cmb/2022.68.3.33 [DOI:10.14715/cmb/2022.68.3.33.]
71. Yang Y, Jiao Y, Mohammadi MR. Post-translational modifications of proteins in tumor immunotherapy and their potential as immunotherapeutic targets. Cell Mol Biomed Rep 2023 Feb 25. doi: 10.55705/cmbr.2023.378480.1091. [DOI:10.55705/cmbr.2023.378480.1091]
72. Ali Salman R. Prevalence of women breast cancer. Cell Mol Biomed Rep 2023 Mar 20. doi: 10.55705/cmbr.2023.384467.1095. [DOI:10.55705/cmbr.2023.384467.1095]
73. Kanwal N, Al Samarrai OR, Al-Zaidi HM, Mirzaei AR, Heidari MJ. Comprehensive analysis of microRNA (miRNA) in cancer cells. Cell Mol Biomed Rep 2023 Jun 1;3(2):89-97. doi: 10.55705/cmbr.2022.364591.1070 [DOI:10.55705/cmbr.2022.364591.1070]
74. Li X and Mohammadi MR. Combined Diagnostic Efficacy of Red Blood Cell Distribution Width (RDW), Prealbumin (PA), Platelet-to-Lymphocyte Ratio (PLR), and Carcinoembryonic Antigen (CEA) as Biomarkers in the Diagnosis of Colorectal Cancer. Cell Mol Biomed Rep 2023 Jun 1;3(2):98-106. doi: 10.55705/cmbr.2023.374804.1088. [DOI:10.55705/cmbr.2023.374804.1088]
75. Alsaedy HK, Mirzaei AR, Alhashimi RA. Investigating the structure and function of Long Non-Coding RNA (LncRNA) and its role in cancer. Cell Mol Biomed Rep 2022 Dec 1;2(4):245-53. doi: 10.55705/cmbr.2022.360799.1062. [DOI:10.55705/cmbr.2022.360799.1062]
76. Alavi M, Rai M, Martinez F, Kahrizi D, Khan H, Rose Alencar De Menezes I, Douglas Melo Coutinho H, Costa JG. The efficiency of metal, metal oxide, and metalloid nanoparticles against cancer cells and bacterial pathogens: different mechanisms of action. Cell Mol Biomed Rep 2022 Mar 1;2(1):10-21. doi: 10.55705/cmbr.2022.147090.1023. [DOI:10.55705/cmbr.2022.147090.1023]
77. Alhashimi RA, Mirzaei A, Alsaedy H. Molecular and clinical analysis of genes involved in gastric cancer. Cell Mol Biomed Rep. 2021;1(3):138-46. Alhashimi, R. A., Mirzaei, A., Alsaedy, H. Molecular and clinical analysis of genes involved in gastric cancer. Cell Mol Biomed Rep 2021; 1(3): 138-146. doi: 10.55705/cmbr.2021.355860.1056. [DOI:10.55705/cmbr.2021.355860.1056]
78. Tourang M, Fang L, Zhong Y, Suthar RC. Association between Human Endogenous Retrovirus K gene expression and breast cancer. Cellular, Molecular and Biomedical Reports. 2021 Apr 1;1(1):7-13. Tourang, M., Fang, L., Zhong, Y., Suthar, R. Association between Human Endogenous Retrovirus K gene expression and breast cancer. Cell Mol Biomed Rep 2021; 1(1): 7-13. doi: 10.55705/cmbr.2021.138810.1008. [DOI:10.55705/cmbr.2021.138810.1008]
79. Bilal I, Xie S, Elburki MS, Aziziaram Z, Ahmed SM, Jalal Balaky ST. Cytotoxic effect of diferuloylmethane, a derivative of turmeric on different human glioblastoma cell lines. Cell Mol Biomed Rep 2021 Apr 1;1(1):14-22. doi: 10.55705/cmbr.2021.138815.1004. [DOI:10.55705/cmbr.2021.138815.1004]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Babaei S, Kahrizi D, Karimi N, Nosratti I, Arkan E, Ercişli S et al . Cytotoxic effects of chloridazon-loaded alginate-chitosan nanocapsules on the 4T1 breast cancer cell line.. Int J Radiat Res 2024; 22 (3) :739-748
URL: http://ijrr.com/article-1-5658-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 22, Issue 3 (7-2024) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.04 seconds with 50 queries by YEKTAWEB 4710