[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: ::
Back to the articles list Back to browse issues page
A comparison of two low-cost 3D printing techniques for constructing phantoms from MRI breast images
K. Bliznakova , T. Georgiev , A. Sarno , T. Teneva , N. Dukov , N. Okkalidis , Zh. Bliznakov
Department of Medical Equipment, Electronic and Information Technologies in Healthcare, Medical University of Varna, Varna, Bulgaria , kristina.bliznakova@mu-varna.bg
Abstract:   (136 Views)
Background: This study aimed to test the possibility of using Magnetic Resonance (MR) images to create anthropomorphic breast phantoms for X-ray imaging and to compare the performance of fused deposition modeling (FDM) and 2D inkjet printing with radiopaque inks. Materials and Methods: Two physical phantoms were produced using either an inkjet printer on paper or an FDM technique, both based on clinical MR data. The paper phantom was printed with 1.2 g of KI dissolved in 20 ml of water. For the FDM phantom, the extrusion rate was adjusted according to clinical Hounsfield unit (HU) values. These phantoms underwent imaging using a clinical computed tomography (CT) device at two energy spectra, and their CT images were assessed in terms of HUs, histogram distributions, spectral and subjective analyses, as well as cost. Results: The objective CT analysis of the phantoms revealed that HU values and β-values, indicating the anatomical complexity of the breast parenchyma, were in line with those expected, with an advantage for the FDM-based phantom. In both cases, the β-values were close to those for clinical breast images acquired with high-resolution CT scanners. Subjective evaluation, however, indicated a need for refining the realism of the phantoms, particularly in terms of preserving the fine details. Conclusion: Breast MR Images offer the possibility of constructing breast phantoms. However, the method fails to replicate fine details in phantom CT images. Addressing this challenge requires improvement in segmentation processes and manufacturing accuracy.
Keywords: 3D printing, fused-deposition modeling, inkjet printing, anthropomorphic breast phantoms, X-rays, magnetic resonance images.
Full-Text [PDF 1199 kb]   (29 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Back to the articles list Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.06 seconds with 50 queries by YEKTAWEB 4660