Department of Medical Equipment, Electronic and Information Technologies in Healthcare, Medical University of Varna, Varna, Bulgaria , kristina.bliznakova@mu-varna.bg
Abstract: (506 Views)
Background:This study aimed to test the possibility of using Magnetic Resonance (MR) images to create anthropomorphic breast phantoms for X-ray imaging and to compare the performance of fused deposition modeling (FDM) and 2D inkjet printing with radiopaque inks. Materials and Methods: Two physical phantoms were produced using either an inkjet printer on paper or an FDM technique, both based on clinical MR data. The paper phantom was printed with 1.2 g of KI dissolved in 20 ml of water. For the FDM phantom, the extrusion rate was adjusted according to clinical Hounsfield unit (HU) values. These phantoms underwent imaging using a clinical computed tomography (CT) device at two energy spectra, and their CT images were assessed in terms of HUs, histogram distributions, spectral and subjective analyses, as well as cost. Results: The objective CT analysis of the phantoms revealed that HU values and β-values, indicating the anatomical complexity of the breast parenchyma, were in line with those expected, with an advantage for the FDM-based phantom. In both cases, the β-values were close to those for clinical breast images acquired with high-resolution CT scanners. Subjective evaluation, however, indicated a need for refining the realism of the phantoms, particularly in terms of preserving the fine details. Conclusion: Breast MR Images offer the possibility of constructing breast phantoms. However, the method fails to replicate fine details in phantom CT images. Addressing this challenge requires improvement in segmentation processes and manufacturing accuracy.
1. 1. Bliznakova K (2020) The advent of anthropomorphic three-dimensional breast phantoms for X-ray imaging. Phys Med, 79: 145-161. DOI: 10.1016/j.ejmp.2020.11.025. [DOI:10.1016/j.ejmp.2020.11.025] [PMID]
2. Sarno A, Valero C, Tucciariello RM, Dukov N, Costa PR, Tomal A (2023) Physical and digital phantoms for 2D and 3D x-ray breast imaging: Review on the state-of-the-art and future prospects. Radiat Phys Chem, 204: 110715. DOI:
https://doi.org/10.1016/j.radphyschem.2022.110715 [DOI:10.1016/j.radphyschem.2022.110715.]
3. Sarno A, Mettivier G, di Franco F, Varallo A, Bliznakova K, Hernandez AM and Russo P (2021) Dataset of patient‐derived digital breast phantoms for in silico studies in breast computed tomography, digital breast tomosynthesis, and digital mammography. Med Phys, 48: 2682-2693. DOI: 10.1002/mp.14826. [DOI:10.1002/mp.14826] [PMID]
4. Schmidt CS, Zellweger C, Wieler J, Berger N, Marcon M, Frauenfelder T and Boss A (2022) Clinical assessment of image quality, usability and patient comfort in dedicated spiral breast computed tomography. Clin Imaging, 90: 50-58. DOI: 10.1016/j.clinimag.2022.07.001. [DOI:10.1016/j.clinimag.2022.07.001] [PMID]
5. Zhu Y, O'Connell AM, Ma Y, Liu A, Li H, Zhang Y, et al. (2022) Dedicated breast CT: state of the art-Part I. Historical evolution and technical aspects. Eur Radiol, 32: 1579-1589. DOI: 10.1007/s00330-021-08179-z. [DOI:10.1007/s00330-021-08179-z] [PMID]
6. Zhu Y, O'Connell AM, Ma Y, Liu A, Li H, Zhang Y, et al. (2022) Dedicated breast CT: state of the art-Part II. Clinical application and future outlook. Eur Radiol, 32: 2286-2300. DOI: 10.1007/s00330-021-08178-0. [DOI:10.1007/s00330-021-08178-0] [PMID]
7. Pelicano AC, Goncalves MCT, Godinho DM, Castela T, Orvalho ML, Araujo NAM, et al. (2021) Development of 3D MRI-Based Anatomically Realistic Models of Breast Tissues and Tumours for Microwave Imaging Diagnosis. Sensors, 21: 8265. DOI: 10.3390/s21248265. [DOI:10.3390/s21248265] [PMID] []
8. Godinho DM, Felicio JM, Castela T, Silva NA, Orvalho ML, Fernandes CA, et al. (2021) Development of MRI-based axillary numerical models and estimation of axillary lymph node dielectric properties for microwave imaging. Med Phys, 48: 5974-90. DOI: 10.1002/mp.15143. [DOI:10.1002/mp.15143] [PMID]
9. Garcia E, Diez Y, Diaz O, Llado X, Marti R, Marti J, et al. (2018) A step-by-step review on patient-specific biomechanical finite element models for breast MRI to x-ray mammography registration. Med Phys, 45: e6-e31 DOI: 10.1002/mp.12673. [DOI:10.1002/mp.12673]
10. Glick SJ, Ikejimba LC (2018) Advances in digital and physical anthropomorphic breast phantoms for x-ray imaging. Med Phys, 45: e870-e85. DOI: 10.1002/mp.13110. [DOI:10.1002/mp.13110] [PMID]
11. di Franco F, Sarno A, Mettivier G, Hernandez AM, Bliznakova K, Boone JM, et al. (2020) GEANT4 Monte Carlo simulations for virtual clinical trials in breast X-ray imaging: Proof of concept. Phys Med, 74: 133-142. DOI: S1120-1797(20)30123-X [10.1016/j.ejmp.2020.05.007]. [DOI:10.1016/j.ejmp.2020.05.007] [PMID]
12. Dukov NT, Feradov FN, Gospodinova GD, Bliznakova KS (2019) An approach for printing tissue-mimicking abnormalities dedicated to applications in breast imaging. 28th International Scientific Conference Electronics, ET 2019 - Proceedings: Institute of Electrical and Electronics Engineers Inc.; DOI: 10.1109/et.2019.8878587. [DOI:10.1109/ET.2019.8878587]
13. Mei K, Geagan M, Roshkovan L, Litt HI, Gang GJ, Shapira N, et al. (2022) Three-dimensional printing of patient-specific lung phantoms for CT imaging: Emulating lung tissue with accurate attenuation profiles and textures. Med Phys, 49: 825-835. DOI: 10.1002/mp.15407. [DOI:10.1002/mp.15407] [PMID] []
14. Varallo A, Sarno A, Castriconi R, Mazzilli A, Loria A, Del Vecchio A, et al. (2022) Fabrication of 3D printed patient-derived anthropomorphic breast phantoms for mammography and digital breast tomosynthesis: Imaging assessment with clinical X-ray spectra. Phys Med, 98: 88-97. DOI:
https://doi.org/10.1016/j.ejmp.2022.04.006 [DOI:10.1016/j.ejmp.2022.04.006.] [PMID]
15. Mettivier G, Sarno A, di Franco F, Bliznakova K, Bliznakov Z, Hernandez AM, et al. (2019) The Napoli-Varna-Davis project for virtual clinical trials in X-ray breast imaging. IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Manchester, UK, pp. 1-5, DOI: 10.1109/NSS/MIC42101.2019.9059828. [DOI:10.1109/NSS/MIC42101.2019.9059828]
16. Carton AK, Bakic P, Ullberg C, Derand H, Maidment AD (2011) Development of a physical 3D anthropomorphic breast phantom. Med Phys, 38: 891-896. DOI: 10.1118/1.3533896. [DOI:10.1118/1.3533896] [PMID] []
17. Kiarashi N, Nolte AC, Sturgeon GM, Segars WP, Ghate SV, Nolte LW, et al. (2015) Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data. Med Phys, 42: 4116-4126. DOI: 10.1118/1.4919771. [DOI:10.1118/1.4919771] [PMID]
18. Badal A, Clark M, Ghammraoui B (2018) Reproducing two-dimensional mammograms with three-dimensional printed phantoms. J Med Imaging, 5: 033501 DOI: 10.1117/1.JMI.5.3.033501 17353PRR. [DOI:10.1117/1.JMI.5.3.033501] [PMID] []
19. Schopphoven S, Cavael P, Bock K, Fiebich M, Mader U (2019) Breast phantoms for 2D digital mammography with realistic anatomical structures and attenuation characteristics based on clinical images using 3D printing. Phys Med Biol, 64: 215005. DOI: 10.1088/1361-6560/ab3f6a. [DOI:10.1088/1361-6560/ab3f6a] [PMID]
20. Ikejimba LC, Graff CG, Rosenthal S, Badal A, Ghammraoui B, Lo JY, et al. (2017) A novel physical anthropomorphic breast phantom for 2D and 3D x-ray imaging. Med Phys, 44: 407-416. DOI: 10.1002/mp.12062. [DOI:10.1002/mp.12062] [PMID]
21. Georgiev T, Kolev I, Dukov N, Mavrodinova S, Yordanova M, Bliznakova K (2021) Development of an inkjet calibration phantom for X-ray imaging studies. Scripta Scientifica Medica, 53: 15-20 DOI: http://dx.doi.org/10.14748/ssm.v0i0.7410. [DOI:10.14748/ssm.v0i0.7410]
22. Ikejimba LC, Salad J, Graff CG, Goodsitt M, Chan HP, Huang H, et al. (2021) Assessment of task-based performance from five clinical DBT systems using an anthropomorphic breast phantom. Med Phys, 48: 1026-1038. DOI: 10.1002/mp.14568. [DOI:10.1002/mp.14568] [PMID]
23. Jahnke P, Limberg FRP, Gerbl A, Pardo GLA, Braun VPB, Hamm B, et al. (2017) Radiopaque three-dimensional printing: A method to create realistic CT phantoms. Radiology, 282: 569-575. DOI: 10.1148/radiol.2016152710. [DOI:10.1148/radiol.2016152710] [PMID]
24. Ivanov D, Bliznakova K, Buliev I, Popov P, Mettivier G, Russo P, et al. (2018) Suitability of low density materials for 3D printing of physical breast phantoms. Phys Med Biol, 63: 175020. DOI: 10.1088/1361-6560/aad315. [DOI:10.1088/1361-6560/aad315] [PMID]
25. Dukov N, Bliznakova K, Okkalidis N, Teneva T, Encheva E, Bliznakov Z (2022) Thermoplastic 3D printing technology using a single filament for producing realistic patient-derived breast models. Phys Med Biol, 67: 045008, DOI: 10.1088/1361-6560/ac4c30. [DOI:10.1088/1361-6560/ac4c30] [PMID]
26. Dukov N, Bliznakova K, Okkalidis N, Teneva T, Encheva E, Bliznakov Z (2021) Patient breast MRI images and computational breast phantom data for research in patient-derived realistic breast modelling (Versione 1) [Data set]. Zenodo. [DOI:10.5281/zenodo.5887359]
27. Berger MJ, Hubbell JH, Seltzer SM, Chang J, Coursey JS, Sukumar R, Zucker DS and Olsen K (2010) XCOM: Photon Cross Section Database (version 1.5). [Online] Available: http://physics.nist.gov/xcom [2023, August 23]. National Institute of Standards and Technology, Gaithersburg, MD.
28. Bryant JA, Drage NA, Richmond S (2012) CT number definition. Radiat Phys Chem, 81: 358-361. DOI: 10.1016/j.radphyschem.2011.12.026. [DOI:10.1016/j.radphyschem.2011.12.026]
29. Metheany KG, Abbey CK, Packard N, Boone JM (2008) Characterizing anatomical variability in breast CT images. Med Phys, 35: 4685-4694. DOI: 10.1118/1.2977772. [DOI:10.1118/1.2977772] [PMID] []
30. Chen L, Abbey CK, Nosrateih A, Lindfors KK, Boone JM (2012) Anatomical complexity in breast parenchyma and its implications for optimal breast imaging strategies. Med Phys, 39: 1435-1441. DOI: 10.1118/1.3685462. [DOI:10.1118/1.3685462] [PMID] []
31. Marinov S, Buliev I, Cockmartin L, Bosmans H, Bliznakov Z, Mettivier G, et al. (2021) Radiomics software for breast imaging optimization and simulation studies. Phys Med, 89: 114-128. DOI:
https://doi.org/10.1016/j.ejmp.2021.07.014 [DOI:10.1016/j.ejmp.2021.07.014.] [PMID]
32. Chen L, Abbey CK, Boone JM (2013)Association between power law coefficients of the anatomical noise power spectrum and lesion detectability in breast imaging modalities. Phys Med Biol, 58: 1663-1681. DOI: 10.1088/0031-9155/58/6/1663. [DOI:10.1088/0031-9155/58/6/1663] [PMID] []
33. Mettivier G, Bliznakova K, Sechopoulos I, Boone JM, Di Lillo F, Sarno A, et al. (2017) Evaluation of the BreastSimulator software platform for breast tomography. Phys Med Biol, 62: 6446-6466 DOI: 10.1088/1361-6560/aa6ca3. [DOI:10.1088/1361-6560/aa6ca3] [PMID] []
34. Geeraert N (2014) "Quantitative evaluation of fibroglandular tissue for estimation of tissue-differentiated absorbed energy in breast tomosynthesis" Doctorat ParisTech Thesis.
35. Ruschin M, Davidson SRH, Phounsy W, Yoo TS, Chin L, Pignol JP, et al. (2016) Technical Note: Multipurpose CT, ultrasound, and MRI breast phantom for use in radiotherapy and minimally invasive interventions. Med Phys, 43: 2508-2514. DOI: 10.1118/1.4947124. [DOI:10.1118/1.4947124] [PMID]
36. Zhao C, Solomon J, Sturgeon GM, Gehm ME, Catenacci M, Wiley BJ and Lo JY (2017) Third generation anthropomorphic physical phantom for mammography and DBT: incorporating voxelized 3D printing and uniform chest wall QC region. In Medical Imaging Physics of Medical Imaging, 10132: 479-486. DOI: 10.1117/12.2256091. [DOI:10.1117/12.2256091]
37. Clark M, Ghammraoui B and Badal A (2016) Reproducing 2D breast mammography images with 3D printed phantoms. Medical Imaging Physics of Medical Imaging, 9783: 89-97. DOI: 10.1117/12.2217215. [DOI:10.1117/12.2217215]
38. Ikejimba LC, Salad J, Graff CG, Ghammraoui B, Cheng WC, Lo JY, et al. (2019) A four-alternative forced choice (4AFC) methodology for evaluating microcalcification detection in clinical full-field digital mammography (FFDM) and digital breast tomosynthesis (DBT) systems using an inkjet-printed anthropomorphic phantom. Med Phys, 46: 3883-3892. DOI: 10.1002/mp.13629. [DOI:10.1002/mp.13629] [PMID]
39. Ma X, Figl M, Unger E, Buschmann M, Homolka P (2022) X-ray attenuation of bone, soft and adipose tissue in CT from 70 to 140 kV and comparison with 3D printable additive manufacturing materials. Sci Rep, 12: 14580. 10.1038/s41598-022-18741-4. [DOI:10.1038/s41598-022-18741-4] [PMID] []
40. Mettivier G, Sarno A, Varallo A, Russo P (2022) Attenuation coefficient in the energy range 14-36 keV of 3D printing materials for physical breast phantoms. Phys Med Biol, 67: Artn 175012, DOI: 10.1088/1361-6560/Ac8966. [DOI:10.1088/1361-6560/ac8966] [PMID]
41. Okkalidis N, Bliznakova K, Kolev N (2022) A filament 3D printing approach for CT-compatible bone tissues replication. Phys Med, 102: 96-102. DOI: 10.1016/j.ejmp.2022.09.009. [DOI:10.1016/j.ejmp.2022.09.009] [PMID]
42. Gong Z, Shen H, Yang X, et al. (2014) Lipid production from corn stover by the oleaginous yeast Cryptococcus curvatus. Biotechnol Biofuels, 23: 158. DOI: 10.1186/s13068-014-0158-y. [DOI:10.1186/s13068-014-0158-y] [PMID] []
43. Kozee M, Weygand J, Andreozzi JM, Hunt D, Perez BA, Graham JA, Redler G (2023) Methodology for computed tomography characterization of commercially available 3D printing materials for use in radiology/radiation oncology. J Appl Clin Med Phys, 24: e139993. DOI: 10.1002/acm2.13999. [DOI:10.1002/acm2.13999] [PMID] []
44. Pegues H, Knudsen J, Tong HY, Gehm ME, Wiley BJ, Samei E, et al. (2019) Using inkjet 3D printing to create contrast-enhanced textured physical phantoms for CT. Medical Imaging: Physics of Medical Imaging, Artn 109484z. DOI: 10.1117/12.2512890. [DOI:10.1117/12.2512890]
45. Okkalidis N (2018) A novel 3D printing method for accurate anatomy replication in patient-specific phantoms. Med Phys, 45: 4600-4606. DOI: 10.1002/mp.13154. [DOI:10.1002/mp.13154] [PMID]
Bliznakova K, Georgiev T, Sarno A, Teneva T, Dukov N, Okkalidis N et al . A comparison of two low-cost 3D printing techniques for constructing phantoms from MRI breast images. Int J Radiat Res 2024; 22 (4) :883-890 URL: http://ijrr.com/article-1-5743-en.html