Department of Gastroenterology, The Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu 223300, China , jsxiatianfang@163.com
Abstract: (590 Views)
Background:DNA methyltransferase 2 (DNMT2) is reported as an RNA modifier regulating the expression of oncogenes in cancers. This work explored the regulatory potential of DNMT2 in gastric cancer (GC) cell proliferation and migration. Materials and Methods: GC cells were induced with Transforming growth factor-beta1 (TGF-β1) for constructing DNMT2 overexpression model. GC cell proliferation was subject to Cell Counting Kit-8 (CCK-8) assay. GC cell migration was observed through wound scratch together with transwell migration assays. Results: The outcomes showed that the DNMT2 overexpression model was successfully built. Relative to the control, the levels of DNMT2 and SMC3 were apparently decreased by TGF-β1 stimulation, whereas E-cadherin, Smad2 as well as Vimentin expression was elevated by TGF-β1, and GC cell proliferation along with migration were significantly elevated. However, in comparison with the NC group, the DNMT2 overexpression group exhibited higher levels of DNMT2 and SMC3, significantly suppressed E-cadherin, Vimentin along with Smad2 expression, and significantly suppressed GC cell proliferation along with migration. Conclusion: Overexpression of DNMT2 inhibits GC cell proliferation along with migration. The level of SMC3 was also elevated by DNMT2 overexpression in GC cells. The findings of our study might provide the theoretical basis for the development of GC.
3. Karimi P, Islami F, Anandasabapathy S, Freedman ND, Kamangar F (2014) Gastric cancer: descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiol Biomarkers Prev, 23(5): 700-713. [DOI:10.1158/1055-9965.EPI-13-1057] [PMID] []
4. Qu Y, Dang S, Hou P (2013) Gene methylation in gastric cancer. Clin Chim Acta, 424: 53-65. [DOI:10.1016/j.cca.2013.05.002] [PMID]
5. Wu X, Gu Z, Chen Y, et al. (2019) Application of PD-1 Blockade in Cancer Immunotherapy. Comput Struct Biotechnol J, 17: 661-674. [DOI:10.1016/j.csbj.2019.03.006] [PMID] []
6. Wong CC, Kang W, Xu J, et al. (2019) Prostaglandin E(2) induces DNA hypermethylation in gastric cancer in vitro and in vivo. Theranostics, 9(21): 6256-6268. [DOI:10.7150/thno.35766] [PMID] []
7. López-Nieva P, González-Vasconcellos I, González-Sánchez L, et al. (2022) Differential molecular response in mice and human thymocytes exposed to a combined-dose radiation regime. Sci Rep, 12(1): 3144. [DOI:10.1038/s41598-022-07166-8] [PMID] []
8. Huumonen K, Korkalainen M, Viluksela M, et al. (2014) Role of microRNAs and DNA Methyltransferases in Transmitting Induced Genomic Instability between Cell Generations. Front Public Health, 2: 139. [DOI:10.3389/fpubh.2014.00139] [PMID] []
9. Joshi SS and Badgwell BD (2021) Current treatment and recent progress in gastric cancer. CA Cancer J Clin, 71(3): 264-279. [DOI:10.3322/caac.21657] [PMID] []
10. Cao Y, Liu H, Li H, et al. (2017) Association of O6-Methylguanine-DNA Methyltransferase Protein Expression With Postoperative Prognosis and Adjuvant Chemotherapeutic Benefits Among Patients With Stage II or III Gastric Cancer. Jama Surgery, 152(11): e173120-e. [DOI:10.1001/jamasurg.2017.3120] [PMID] []
11. Kanai Y, Ushijima S, Kondo Y, Nakanishi Y, Hirohashi S (2001) DNA methyltransferase expression and DNA methylation of CPG islands and peri-centromeric satellite regions in human colorectal and stomach cancers. Int J Cancer, 91(2): 205-212.
https://doi.org/10.1002/1097-0215(200002)9999:9999<::AID-IJC1040>3.0.CO;2-2 [DOI:10.1002/1097-0215(200002)9999:99993.0.CO;2-2]
12. Subramaniam D, Thombre R, Dhar A, Anant S (2014) DNA methyltransferases: a novel target for prevention and therapy. Front Oncol, 4: 80. [DOI:10.3389/fonc.2014.00080] [PMID] []
13. Schwickert M, Fischer TR, Zimmermann RA, et al. (2022) Discovery of Inhibitors of DNA Methyltransferase 2, an Epitranscriptomic Modulator and Potential Target for Cancer Treatment. J Med Chem, 65(14): 9750-9788. [DOI:10.1021/acs.jmedchem.2c00388] [PMID]
14. Necula L, Matei L, Dragu D, et al. (2019) Recent advances in gastric cancer early diagnosis. World J Gastroenterol, 25(17): 2029-2044. [DOI:10.3748/wjg.v25.i17.2029] [PMID] []
15. Li R, Jiang J, Shi H, et al. (2020) CircRNA: a rising star in gastric cancer. Cell Mol Life Sci, 77(9): 1661-1680. [DOI:10.1007/s00018-019-03345-5] [PMID] []
16. Khanipouyani F, Akrami H, Fattahi MR (2021) Circular RNAs as important players in human gastric cancer. Clin Transl Oncol, 23(1): 10-21. [DOI:10.1007/s12094-020-02419-2] [PMID]
17. Bastos N, Castaldo SA, Adem B, et al. (2023) SMC3 epigenetic silencing regulates Rab27a expression and drives pancreatic cancer progression. J Transl Med, 21(1): 578. [DOI:10.1186/s12967-023-04448-1] [PMID] []
18. Peters JM, Tedeschi A, Schmitz J (2008) The cohesin complex and its roles in chromosome biology. Genes Dev, 22(22): 3089-3114. [DOI:10.1101/gad.1724308] [PMID]
19. Su Y, Lin H, Yu J, et al. (2023) RIT1 regulates mitosis and promotes proliferation by interacting with SMC3 and PDS5 in hepatocellular carcinoma. J Exp Clin Cancer Res, 42(1): 326. [DOI:10.1186/s13046-023-02892-x] [PMID] []
20. Covo S, Westmoreland JW, Gordenin DA, Resnick MA (2010) Cohesin Is limiting for the suppression of DNA damage-induced recombination between homologous chromosomes. PLoS Genet, 6(7): e1001006. [DOI:10.1371/journal.pgen.1001006] [PMID] []
21. Xia T, Pan Z, Zhang J (2020) CircSMC3 regulates gastric cancer tumorigenesis by targeting miR-4720-3p/TJP1 axis. Cancer Med, 9(12): 4299-4309. [DOI:10.1002/cam4.3057] [PMID] []
22. Neves M, Ribeiro J, Medeiros R, Sousa H (2016) Genetic polymorphism in DNMTs and gastric cancer: A systematic review and meta-analysis. Porto Biomed J, 1(5): 164-172. [DOI:10.1016/j.pbj.2016.10.005] [PMID] []
23. Zhang Y, Zhang X, Shi J, et al. (2018) Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs. Nat Cell Biol, 20(5): 535-540. [DOI:10.1038/s41556-018-0087-2] [PMID] []
24. Jeltsch A, Ehrenhofer-Murray A, Jurkowski TP, et al. (2017) Mechanism and biological role of Dnmt2 in Nucleic Acid Methylation. RNA Biol, 14(9): 1108-1123. [DOI:10.1080/15476286.2016.1191737] [PMID] []
25. Ashapkin VV, Kutueva LI, Vanyushin BF (2016) [Dnmt2 is the Most Evolutionary Conserved and Enigmatic Cytosine DNA Methyltransferase in Eukaryotes]. Genetika, 52(3): 269-282. [DOI:10.1134/S1022795416030029]
26. Lyko F (2018) The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet, 19(2): 81-92. [DOI:10.1038/nrg.2017.80] [PMID]
27. Yu T, Xie Y, Tang C, et al. (2021) Dnmt2-null sperm block maternal transmission of a paramutant phenotype†. Biol Reprod, 105(3): 603-612. [DOI:10.1093/biolre/ioab086] [PMID] []
28. Amini J, Hasanramezani A (2022) AAK1 Circular Regulates Neuronal Development by Interacting with miR-132, miR-146a and miR484. Alkhass, 4(4): 1-4. [DOI:10.47176/alkhass.4.4.1]
29. Li M, Tao Z, Zhao Y, et al. (2022) 5-methylcytosine RNA methyltransferases and their potential roles in cancer. J Transl Med, 20(1): 214. [DOI:10.1186/s12967-022-03427-2] [PMID] []
30. He Z, Dong W, Li Q, Qin C, Li Y (2018) Sauchinone prevents TGF-β-induced EMT and metastasis in gastric cancer cells. Biomed Pharmacother, 101: 355-361. [DOI:10.1016/j.biopha.2018.02.121] [PMID]
31. Zhang H, Liu L, Wang Y, et al. (2013) KLF8 involves in TGF-beta-induced EMT and promotes invasion and migration in gastric cancer cells. J Cancer Res Clin Oncol, 139(6): 1033-1042. [DOI:10.1007/s00432-012-1363-3] [PMID]
32. Deng L, Zou J, Su Y, Wang M, Zhao L (2022) Resveratrol inhibits TGF-β1-induced EMT in gastric cancer cells through Hippo-YAP signaling pathway. Clin Transl Oncol, 24(11): 2210-2221. [DOI:10.1007/s12094-022-02882-z] [PMID]
33. Hu YZ, Hu ZL, Liao TY, Li Y, Pan YL (2022) LncRNA SND1-IT1 facilitates TGF-β1-induced epithelial-to-mesenchymal transition via miR-124/COL4A1 axis in gastric cancer. Cell Death Discov, 8(1): 73. [DOI:10.1038/s41420-021-00793-6] [PMID] []
34. Lewinska A, Adamczyk-Grochala J, Kwasniewicz E, et al. (2018) Reduced levels of methyltransferase DNMT2 sensitize human fibroblasts to oxidative stress and DNA damage that is accompanied by changes in proliferation-related miRNA expression. Redox Biol, 14: 20-34. [DOI:10.1016/j.redox.2017.08.012] [PMID] []
35. Xue S, Xu H, Sun Z, et al. (2019) Depletion of TRDMT1 affects 5-methylcytosine modification of mRNA and inhibits HEK293 cell proliferation and migration. Biochem Biophys Res Commun, 520(1): 60-66. [DOI:10.1016/j.bbrc.2019.09.098] [PMID]
36. Yan W, Wang DD, Zhang HD, et al. (2022) Expression profile and prognostic values of SMC family members in HCC. Medicine (Baltimore), 101(42): e31336. [DOI:10.1097/MD.0000000000031336] [PMID] []
37. Ghiselli G, Liu CG (2005) Global gene expression profiling of cells overexpressing SMC3. Mol Cancer, 4: 34. [DOI:10.1186/1476-4598-4-34] [PMID] []
Xia T, Zhang Z, Guo X. Effects of DNA methyltransferase 2 (DNMT2) on gastric cancer cells proliferation and migration via regulation of structural maintenance of chromosomes 3 (SMC3). Int J Radiat Res 2024; 22 (4) :897-902 URL: http://ijrr.com/article-1-5746-en.html