[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 22, Issue 4 (10-2024) ::
Int J Radiat Res 2024, 22(4): 999-1007 Back to browse issues page
Establishment of regional diagnostic reference level for CT planning of breast cancer and comparing them with international values
E. Hasanpour , A. Maziar , R. Paydar , A. Nikoofar
Radiation Science Department, Faculty of Allied Medicine, and Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran , asgharmaziar@hotmail.com
Abstract:   (392 Views)
Background: All over the world, Computed Tomography (CT) scan is used as an essential method in radiation therapy treatment planning. Ionizing radiation for the medical exposures should follow principle "As Low as Reasonably Achievable" (ALARA) to reduce the dose. The objective of this study is to establish a Diagnostic Reference Level (DRL) for breast Computed Tomography planning (CTp) and compare it with other DRLs because there are no dose guidelines for breast cancer CTp in Iran. The established DRL can be used for dose optimization in CT planning. Materials and Methods: We surveyed six RT centers in Tehran and collected data from patients with breast cancer, who were of average size, regarding the volume Computed Tomography Dose Index (CTDIvol), the dose length product (DLP), the dose parameters, the scan length, the thickness of the slices, and the use of automated exposure control (AEC). DRLs were calculated for each dose descriptor using the rounded 75th percentile of the distribution of means. Results: Data were collected on a total of 90 breast cancer CT localization scans from six CT centers. Significant variation was observed in mean DLP and mean CTDIvol among centers (p value < 0.0001). Moreover, mean mAs and scan length significantly differed across centers (p < 0.0001). Calculated DRLs for breast localization are 296.29 mGy cm and 6.64 mGy for DLP and CTDIvol, respectively which were lower compared with other studies conducted in this field. Conclusion: There were differences in doses used for breast CT planning among centers. DRLs were proposed for dose optimization and patient radiation protection in CT planning.
Keywords: Radiotherapy, CT planning, breast cancer, Dose Reference Level, dose optimization.
Full-Text [PDF 569 kb]   (132 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. 1. Shao YH, Tsai K, Kim S, Wu YJ and Demissie K (2020) Exposure to tomographic scans and cancer risks. JNCI Cancer Spectrum, 4(1): pkz072 [DOI:10.1093/jncics/pkz072] [PMID] []
2. Dougeni E, Faulkner K and Panayiotakis G (2012) A review of patient dose and optimisation methods in adult and paediatric CT scanning. European Journal of Radiology, 81(4): e665-e683. [DOI:10.1016/j.ejrad.2011.05.025] [PMID]
3. Vañó E, Miller DL, Martin CJ, Rehani MM, Kang K, Rosenstein M and Rogers A (2017) ICRP publication 135: Diagnostic reference levels in medical imaging. Annals of the ICRP, 46(1): 1-144. [DOI:10.1177/0146645317717209] [PMID]
4. Aberle C, Ryckx N, Treier R and Schindera S (2020) Update of national diagnostic reference levels for adult CT in Switzerland and assessment of radiation dose reduction since 2010. European Radiology, 30: 1690-1700. [DOI:10.1007/s00330-019-06485-1] [PMID]
5. Connor SO, Mc Ardle O and Mullaney L (2016) Establishment of national diagnostic reference levels for breast cancer CT protocols in radiation therapy. The British Journal of Radiology, 89(1066): 20160428. [DOI:10.1259/bjr.20160428] [PMID] []
6. Zalokar N, Marciuš VŽ and Mekiš N (2020) Establishment of national diagnostic reference levels for radiotherapy computed tomography simulation procedures in Slovenia. European Journal of Radiology, 127: 108979. [DOI:10.1016/j.ejrad.2020.108979] [PMID]
7. Weber L and Wieslander E (2018) [P155] Exposure levels from CT scanning for treatment planning in radiotherapy. Physica Medica: European Journal of Medical Physics, 52: 143-144. [DOI:10.1016/j.ejmp.2018.06.459]
8. Božanić A, Šegota D, Debeljuh DD, Kolacio MŠ, Radojčić ĐS, Ružić K and Jurković S (2022) National reference levels of CT procedures dedicated for treatment planning in radiation oncology. Physica Medica, 96: 123-129. [DOI:10.1016/j.ejmp.2022.03.001] [PMID]
9. Mehrotra R and Yadav K (2022) Breast cancer in India: Present scenario and the challenges ahead. World Journal of Clinical Oncology, 13(3): 209. [DOI:10.5306/wjco.v13.i3.209] [PMID] []
10. Łukasiewicz S, Czeczelewski M, Forma A, Baj J, Sitarz R and Stanisławek A (2021) Breast cancer-epidemiology, risk factors, classification, prognostic markers and current treatment strategies-an updated review. Cancers, 13(17): 4287. [DOI:10.3390/cancers13174287] [PMID] []
11. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3): 209-24912. [DOI:10.3322/caac.21660] [PMID]
12. Saedi S, Saedi A, Ghaemi MM and Milani FM (2022) Epidemiological study of breast cancer in Iran: A micro review study. Eurasian Journal of Science and Technology, 2(3): 227-235.
13. Shamshirian A, Heydari K, Shams Z, Aref AR, Shamshirian D, Tamtaji OR and Alizadeh-Navaei R (2020) Breast cancer risk factors in Iran: A systematic review and meta-analysis. Hormone Molecular Biology and Clinical Investigation, 41(4): 20200021. https://doi.org/10.1016/j.annonc.2020.08.310 https://doi.org/10.20944/preprints202004.0074.v1 [DOI:10.1515/hmbci-2020-0021]
14. Albahiti SK, Barnawi RA, Alsafi K, Khafaji M, Aljondi R, Alghamdi SS and Bradley D (2022) Establishment of institutional diagnostic reference levels for 6 adult computed tomography examinations: Results from preliminary data collection. Radiation Physics and Chemistry, 201: 110477. [DOI:10.1016/j.radphyschem.2022.110477]
15. Foley SJ, McEntee MF and Rainford LA (2012) Establishment of CT diagnostic reference levels in Ireland. The British Journal of Radiology, 85(1018): 1390-1397. [DOI:10.1259/bjr/15839549] [PMID] []
16. Lee C, Kim KP, Bolch WE, Moroz BE and Folio L (2015) NCICT: A computational solution to estimate organ doses for pediatric and adult patients undergoing CT scans. Journal of Radiological Protection, 35(4): 891. [DOI:10.1088/0952-4746/35/4/891] [PMID]
17. Rawashdeh M, Saade C, Zaitoun M, Abdelrahman M, Brennan P, Alewaidat H and McEntee MF (2019) Establishment of diagnostic reference levels in cardiac computed tomography. Journal of Applied Clinical Medical Physics, 20(10): 181-186. [DOI:10.1002/acm2.12711] [PMID] []
18. Toori AJ, Shabestani-Monfared A, Deevband MR, Abdi R and Nabahati M (2015) Dose assessment in computed tomography examination and establishment of local diagnostic reference levels in Mazandaran, Iran. Journal of Biomedical Physics and Engineering, 5(4): 177.
19. Mkimel M, El Baydaoui R, Mesradi M, Tahiri Z, Saad S and Hilali A (2019) Assessment of the radiation dose during 16 slices CT examinations. Int J Recent Technol Eng, 8: 4652-7.
20. Kharita MH, Al-Naemi H, Arru C, Omar AJ, Aly A, Tsalafoutas I and Kalra MK (2020) Relation between age and CT radiation doses: Dose trends in 705 pediatric head CT. European Journal of Radiology, 130: 109138. [DOI:10.1016/j.ejrad.2020.109138] [PMID]
21. Aboul Hamad MS, Attalla EM, Amer HH and Fathy MM (2023) Assessment of diagnostic reference levels for paediatric cardiac computed tomography in accordance with European guidelines. Radiation and Environmental Biophysics, 62(3): 331-338. [DOI:10.1007/s00411-023-01031-6] [PMID] []
22. Oyedokun OS, Arogunjo AM, Fatukasi JI and Egberongbe AA (2020) Diagnostic reference level of computed tomography examinations and need for dose optimization in Ondo State, Nigeria. Iranian Journal of Medical Physics/Majallah-I Fīzīk-I Pizishkī-i Īrān, 17(4).
23. Deevband M, Ghorbani M, Eshraghi A, Salimi Y, Saeedzadeh E, Kardan M, et al. (2021) Patient effective dose estimation for routine computed tomography examinations in Iran. International Journal of Radiation Research, 19(1): 63-73. [DOI:10.29252/ijrr.19.1.63]
24. Wood TJ, Davis AT, Earley J, Edyvean S, Findlay U, Lindsay R and Williams M (2018) IPEM topical report: The first UK survey of dose indices from radiotherapy treatment planning computed tomography scans for adult patients. Physics in Medicine and Biology, 63(18): 185008. [DOI:10.1088/1361-6560/aacc87] [PMID]
25. Diklić A, Šegota D, Belac-Lovasić I and Jurković S (2018) Assessment of dose indicators for ct localization procedures in radiation therapy at university hospital RIJEKA. Nuclear Ttechnology and Radiation Protection, 33(3): 301-306. [DOI:10.2298/NTRP1803301D]
26. Kamdem EF, Samba ON, Manemo CT, Kouam BBF, Abog, S, Tambe J and Fotue AJ (2022) Establishment of local diagnostic reference level for routine paediatric computed tomography examinations in Bafoussam West Cameroon. Radiation Protection Dosimetry, 198(12): 815-820. [DOI:10.1093/rpd/ncac143] [PMID]
27. Vassileva J and Rehani M (2015) Diagnostic reference levels. American Journal of Roentgenology, 204(1): W1-W3. [DOI:10.2214/AJR.14.12794] [PMID]
28. Afzalipour R, Abdollahi H, Hajializadeh MS, Jafari S and Mahdavi SR (2019) Estimation of diagnostic reference levels for children computed tomography: A study in Tehran, Iran. International Journal of Radiation Research, 17(3): 407-413.
29. Singh S, Kalra MK, Khawaja RDA, Padole A, Pourjabbar S, Lira D and Digumarthy SR (2014) Radiation dose optimization and thoracic computed tomography. Radiologic Clinics, 52(1): 1-15. [DOI:10.1016/j.rcl.2013.08.004] [PMID]
30. Rao MS, Kadavigere DR, Sharan DK, Sukumar DS, GC MS and Dsouza MRN (2022) Establishment of diagnostic reference level and radiation dose variation in head and neck and pelvis treatment planning in radiation therapy computed tomography. F1000Research, 11: 489. https://doi.org/10.12688/f1000research.110966.1 [DOI:10.12688/f1000research.110966.2]
31. Moon IB, Dong KR and Kim KC (2016) The impact of the AEC mode of tube current on the dose at CT scans. Journal of Radiation Industry, 10(2): 49-54.
32. Kito S, Suda Y, Tanabe S, Takizawa T, Nagahata T, Tohyama N and Sakamoto M (2024) Radiological imaging protection: A study on imaging dose used while planning computed tomography for external radiotherapy in Japan. Journal of Radiation Research, 65(2): 159-167. [DOI:10.1093/jrr/rrad098] [PMID] []
33. Sanderud A, England A, Hogg P, Fosså K, Svensson SF and Johansen S (2016) Radiation dose differences between thoracic radiotherapy planning CT and thoracic diagnostic CT scans. Radiography, 22(2): 107-111. [DOI:10.1016/j.radi.2015.08.003]
34. Tahmasebzadeh A, Paydar R and Kaeidi H (2023) Lifetime attributable breast cancer risk related to lung CT scan in women with Covid19. Frontiers in Biomedical Technologies. [DOI:10.18502/fbt.v11i1.14513]
35. Mahesh M, Scatarige JC, Cooper J and Fishman EK (2001) Dose and pitch relationship for a particular multislice CT scanner. American Journal of Roentgenology, 177(6): 1273-1275. [DOI:10.2214/ajr.177.6.1771273] [PMID]
36. Azadbakht J, Khoramian D, Lajevardi ZS, Elikaii F, Aflatoonian AH, Farhood B and Bagheri H (2021) A review on chest CT scanning parameters implemented in COVID-19 patients: Bringing low-dose CT protocols into play. Egyptian Journal of Radiology and Nuclear Medicine, 52: 1-10. [DOI:10.1186/s43055-020-00400-1] []
37. Benedict SH, Yenice KM, Followill D, Galvin JM, Hinson W, Kavanagh B and Yin FF (2010) Stereotactic body radiation therapy: The report of AAPM Task Group 101. Medical Physics, 37(8): 4078-4101. [DOI:10.1118/1.3438081] [PMID]
38. Botwe BO, Schandorf C, Inkoom S and Faanu A (2022) Variability of redundant scan coverages along the Z-axis and dose implications for common computed tomography examinations. Journal of Medical Imaging and Radiation Sciences, 53(1): 113-122. [DOI:10.1016/j.jmir.2021.10.007] [PMID]
39. Tack D, Jahnen A, Kohler S, Harpes N, De Maertelaer V, Back C and Gevenois PA (2014) Multidetector CT radiation dose optimisation in adults: Short-and long-term effects of a clinical audit. European Radiology, 24: 169-175 [DOI:10.1007/s00330-013-2994-8] [PMID]
40. Yel I, Booz C, Albrecht MH, Gruber-Rouh T, Polkowski C, Jacobi M and Kaltenbach B (2019) Optimization of image quality and radiation dose using different cone-beam CT exposure parameters. European Journal of Radiology, 116: 68-75. [DOI:10.1016/j.ejrad.2019.04.005] [PMID]
41. Lahham A, AL Masri H and Kameel S (2018) Estimation of female radiation doses and breast cancer risk from chest CT examinations. Radiation Protection Dosimetry, 179(4): 303-309. [DOI:10.1093/rpd/ncx283] [PMID]
42. Bagherzadeh S, MirDerikvand A and MohammadSharifi A (2024) Evaluation of radiation dose and radiation-induced cancer risk associated with routine CT scan examinations. Radiation Physics and Chemistry, 217: 111521. [DOI:10.1016/j.radphyschem.2024.111521]
43. Harrison RM, Wilkinson M, Rawlings DJ and Moore M (2007) Doses to critical organs following radiotherapy and concomitant imaging of the larynx and breast. The British Journal of Radiology, 80(960): 989-995. [DOI:10.1259/bjr/32814323] [PMID]
44. Sanklaa K, Sanghangthum T and Chongsan T (2017) Evaluation of effective doses in CT simulation using CTDIw calculation. Journal of Associated Medical Sciences, 50(3): 417-423.
45. Khoramian D, Haghparast M, Honardari A, Nouri E, Ranjbar E, Abedi‐Friouzjah R and Afkhami‐Ardakni M (2024) Estimation and comparison of the effective dose and lifetime attributable risk of thyroid cancer between males and females in routine head computed tomography scans: A multicentre study. Journal of Medical Radiation Sciences. [DOI:10.1002/jmrs.752] [PMID] []
46. Angel E, Yaghmai N, Jude CM, DeMarco JJ, Cagnon CH, Goldin JG and McNitt-Gray MF (2009) Dose to radiosensitive organs during routine chest CT: Effects of tube current modulation. American Journal of Roentgenology, 193(5): 1340-1345. [DOI:10.2214/AJR.09.2886] [PMID] []
47. Boone JM (2012) Reply to "Comment on the 'Report of AAPM TG 204: Size-specific dose estimates (SSDE) in pediatric and adult body CT examinations'" [AAPM Report 204, 2011]. Medical Physics, 39(7): 4615. [DOI:10.1118/1.4725757] [PMID] []
48. Prakash P, Kalra MK, Ackman JB, Digumarthy SR, Hsieh J, Do S and Gilman MD (2010) Diffuse lung disease: CT of the chest with adaptive statistical iterative reconstruction technique. Radiology, 256(1): 261-269. [DOI:10.1148/radiol.10091487] [PMID]
49. Rajendran K, Petersilka M, Henning A, Shanblatt ER, Schmidt B, Flohr TG and McCollough CH (2022) First clinical photon-counting detector CT system: Technical evaluation. Radiology, 303(1): 130-138. [DOI:10.1148/radiol.212579] [PMID] []
50. Grenier PA, Brun AL and Mellot F (2022) The potential role of artificial intelligence in lung cancer screening using low-dose computed tomography. Diagnostics, 12(10): 2435. [DOI:10.3390/diagnostics12102435] [PMID] []
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hasanpour E, Maziar A, Paydar R, Nikoofar A. Establishment of regional diagnostic reference level for CT planning of breast cancer and comparing them with international values. Int J Radiat Res 2024; 22 (4) :999-1007
URL: http://ijrr.com/article-1-5787-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 22, Issue 4 (10-2024) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.07 seconds with 48 queries by YEKTAWEB 4700