[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 22, Issue 4 (10-2024) ::
Int J Radiat Res 2024, 22(4): 1019-1025 Back to browse issues page
Comparison of normal tissue integral dose with monitor units from 3DCRT, IMRT, and Rapid Arc treatment planning methods for head and neck, pelvic and thoracic cancer sites
S. Dashnamoorthy , E. Jeyasingh , I. Ahmed
PG & Research Department of Physics, Jamal Mohamed College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli – 620020, Tamil Nadu, India
Abstract:   (533 Views)
Background: Comparison of normal tissue integral dose and treatment monitor units from 3DCRT, IMRT and Rapid treatment plan for oesophagus, left breast, cervical and oropharynx cancer. The calculated normal tissue integral dose from different treatment plans with static and dynamic leaf positions, such as 3DCRT, IMRT and Rapid arc were compared with the generated MU. Material and Methods: Nine patients from oesophagus, left breast and cervix cancer and twelve patients from oropharynx cancer with a total of one hundred and thirty-five generated plans from 3DCRT, IMRT and Rapid arc were analysed. The normal tissue integral dose (NTID) was calculated from in-house developed Python software using a standard formula from the dose-volume histogram. Results: The analysis showed that the NTID and MU differed significantly from all three treatment planning methods and cancer sites. The highest integral dose was from IMRT and Rapid Arc in the oropharynx and oesophagus cancer site; cervical cancer had a 50% lower NTID, and left breast cancer had a 25% lower NTID than oesophageal cancer. Conclusion: The results show that NTID is inversely related to body volume, and that MU depends on the type of treatment planning (greater in IMRT).
Keywords: Normal tissue integral dose, monitor units, Python, intensity-modulated radiotherapy, rapid arc.
Full-Text [PDF 1003 kb]   (150 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. Baskar R, Lee KA, Yeo R, Yeoh K-W (2012) Cancer and radiation therapy: Current advances and future directions. International Journal of Medical Sciences, 9(3): 193-199. [DOI:10.7150/ijms.3635] [PMID] []
2. Baskar R and Itahana K (2017) Radiation therapy and cancer control in developing countries: Can we save more lives? International Journal of Medical Sciences, 14(1): 13-17. [DOI:10.7150/ijms.17288] [PMID] []
3. Losasso T (2008)" IMRT delivery performance with a varian multileaf colimattor". Int J Radiat Oncol Biol Phys, Vol. 71, No. 1, Supplement, S85-S88, [DOI:10.1016/j.ijrobp.2007.06.082] [PMID]
4. Hall EJ and Wuu CS (2003) Radiation-induced second cancers: The impact of 3D-CRT and IMRT. Int J Radiat Oncol Biol Phys, 56: 83-88. [DOI:10.1016/S0360-3016(03)00073-7] [PMID]
5. Lawrence BM, Ellen D, Yorke AJ, et al. (2010) The use of Normal Tissue Complication Probability (NTCP) Models in the clinic. Int J Radiat Oncol Biol Phys, 76(30): S10-S19. [DOI:10.1016/j.ijrobp.2009.07.1754] [PMID] []
6. Emami B, Lyman J, Brown A, et al. (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiate Oncol Biol Phys, 21: 109-122. PubMed: 2032882. [DOI:10.1016/0360-3016(91)90171-Y] [PMID]
7. Cho B (2018) Intensity-modulated radiation therapy: A review with a physics perspective. Radiat Oncol J, 36(1): 1-10. [DOI:10.3857/roj.2018.00122] [PMID] []
8. Orton CG and Thomas R (2008). Bortfeld, Andrzej Niemierko, and Jan Unkelbach, The role of medical physicists and the AAPM in the development of treatment planning and optimization, Med. Phys. 35 (11):4911-23. [DOI:10.1118/1.2990777] [PMID]
9. Johns HE and Cunningham JR (1983) The Physics of Radiology, 4th ed. ~Thomas, Springfield, IL.
10. Podgorsak EB, Rawlinson JA, Johns HE (1975) X-ray depth doses for linear accelerators in the energy range from 10 to 32 MeV. Am J Roentgenol Radium Ther Nucl Med, 123: 182-191. [DOI:10.2214/ajr.123.1.182] [PMID]
11. Z. Dai L. Zhu, A. Wang et al., (2023) Dosimetric and biological comparison of treatment plans between LINAC and robot systems in stereotactic body radiation therapy for localized prostate cancer. International Journal of Radiation Research, Jan,Vol. 21(1): 15-22.
12. Cotrutz C, et al. (2001) ''A multiobjective gradient-based dose optimization algorithm for external beam conformal radiotherapy''. Phys Med Biol, 46: 2161-2175. [DOI:10.1088/0031-9155/46/8/309] [PMID]
13. SK Das and LB Marks (1997) ''Selection of coplanar or noncoplanar beams using three-dimensional optimization based on maximum beam separation and minimized nontarget irradiation''. Int J Radiat Oncol Biol Phys, 38: 643-655. [DOI:10.1016/S0360-3016(97)89489-8] [PMID]
14. De Gersem WR, et al. (2000) ''Optimization of beam weights in conformal radiotherapy planning of stage III non-small cell lung cancer: effects on therapeutic ratio''. Int J Radiat Oncol Biol Phys, 47: 255-260. [DOI:10.1016/S0360-3016(99)00332-6] [PMID]
15. Haas OC, Burnham KJ, Mills JA (1998) ''Optimization of beam orientation in radiotherapy using planar geometry''. Phys Med Biol, 43: 2179-2193. [DOI:10.1088/0031-9155/43/8/013] [PMID]
16. Langer M, et al. (1990) ''Large-scale optimization of beam weights under dose volume restrictions,''. Int J Radiat Oncol Biol Phys, 18: 887-893. [DOI:10.1016/0360-3016(90)90413-E] [PMID]
17. Morrill SM, et al. (1991) ''Treatment planning optimization using constrained simulated annealing''. Phys Med Biol, 36: 1341-1361. [DOI:10.1088/0031-9155/36/10/004] [PMID]
18. A. Shanei A, Amouheidari, I. Abedi, et al. (2020) Radiobiological comparison of 3D conformal and intensity modulated radiation therapy in thetreatment of left-sided breast cancer. International Journal of Radiation Research, 18(2): 315-322.
19. Wen C, et al. (2017)" Intensity-modulated radiotherapy, volume-modulated arc therapyand helical tomotherapy for locally advanced nasopharyngeal carcinoma: A dosimetric comparis". Transl Cancer Res, 6(5): 929-939. [DOI:10.21037/tcr.2017.09.48]
20. Peñagarícano JA (2005)" Evaluation of Integral Dose in Cranio-spinal Axis (CSA) Irradiation with conventional and helical delivery", technology in cancer research and treatment, 4(6): 683-9. [DOI:10.1177/153303460500400613] [PMID]
21. Aoyama H, et al. (2006) Integral radiation dose to normal structures with conformal external beam radiation. Int J Radiation Oncology Biol Phys, 64(3): 962-967. [DOI:10.1016/j.ijrobp.2005.11.005] [PMID]
22. Spirou SV and Chui CS (1994) Generation of arbitrary intensity profiles by dynamic jaws or multileaf collimators. Med Phys, 21: 1031-1041. [DOI:10.1118/1.597345] [PMID]
23. Cozzi L, Dinshaw KA, Shrivastava SK, et al. (2008) A treatment planning study comparing volumetric arc modulation with RapidArc and fixed field IMRT for cervix uteri radiotherapy. Radiother Oncol, 89(2): 180-191. [DOI:10.1016/j.radonc.2008.06.013] [PMID]
24. Oliver M, Ansbacher W, Beckham W (2009) Comparing planning time, delivery time and plan quality for IMRT, RapidArc and Tomotherapy. J Appl Clin Med Phys, 10(4): 3068. [DOI:10.1120/jacmp.v10i4.3068] [PMID] []
25. Oliver M, Gagne I, Popescu C, Ansbacher W, Beckham WA (2009) Analysis of RapidArc optimization strategies using objective function values and dose-volume histogram. J Appl Clin Med Phys, 11(1): 3114. [DOI:10.1120/jacmp.v11i1.3114] [PMID] []
26. Murshed H, Liu H, Liao Z, et al. (2004) Dose and volume reduction for normal lung using intensity-modulated radiotherapy for advanced-stage non-small-cell lung cancer. IJ Radiation Oncology Biology Physics, 58(4):1258-67. [DOI:10.1016/j.ijrobp.2003.09.086] [PMID]
27. Salamekh S and Rong Y (2016) Inter-Fraction tumor volume re-sponse during lung stereotactic body radiation therapy correlated to patient variables, PLOS ONE, Apr 6; 11(4): e0153245. [DOI:10.1371/journal.pone.0153245] [PMID] []
28. D'Souza WD and Rosen II (2003) Nontumor integral dose variation in conventional radiotherapy treatment planning. Med Phys, 30(8): 2065-71. [DOI:10.1118/1.1591991] [PMID]
29. Dashnamoorthy S, Rajamanickam K , Jeyasingh E, et al. (2022) Comparison of dose statistics of intensity- modulated radiation therapy plan from varian eclipse treatment planning system with novel python-based indigenously developed software, Progress in Medical Physics, 33(3): 25-35. [DOI:10.14316/pmp.2022.33.3.25]
30. Verellen D and Vanhavere F (1999) Risk assessment of radiation-induced malignancies based on whole-body equivalent dose estimates for IMRT treatment in the head and neck region. Radiother Oncol, 53: 199 -203 [DOI:10.1016/S0167-8140(99)00079-1] [PMID]
31. D'Souza WD and Rosen II (2003) Nontumor integral dose variation in conventional radiotherapy treatment planning. Med Phys, 30: 2065-2071. [DOI:10.1118/1.1591991] [PMID]
32. Vanhavere F, Huyskens D, Struelens L (2004) Peripheral neutron and gamma doses in radiotherapy with an 18 MV linear accelerator. Radiat Prot Dosim, 110: 607- 612. [DOI:10.1093/rpd/nch135] [PMID]
33. Pirzkall A, Carol MP, Pickett B, et al. (2002) The effect of beam energy and the number of fields on photon-based IMRT for deep-seated targets. Int J Radiat Oncol Biol Phys, 53: 434-442. [DOI:10.1016/S0360-3016(02)02750-5] [PMID]
Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dashnamoorthy S, Jeyasingh E, Ahmed I. Comparison of normal tissue integral dose with monitor units from 3DCRT, IMRT, and Rapid Arc treatment planning methods for head and neck, pelvic and thoracic cancer sites. Int J Radiat Res 2024; 22 (4) :1019-1025
URL: http://ijrr.com/article-1-5793-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 22, Issue 4 (10-2024) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.06 seconds with 50 queries by YEKTAWEB 4700