[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 23, Issue 1 (1-2025) ::
Int J Radiat Res 2025, 23(1): 97-102 Back to browse issues page
Investigation of the effects of tissue material on the energy spectrum from Bebig Co-60 High Dose Rate Brachytherapy source based on the Monte Carlo simulation
N. Qomariyah , F. Haryanto , A. Waris , R. Wirawan
Department of Physics, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia , freddy@itb.ac.id
Abstract:   (288 Views)
Background: High Dose Rate (HDR) brachytherapy is an internal radiation therapy method that delivers high-intensity radiation at >12 Gy/hour dose rate. In clinical practice, the dose calculation is often carried out using the TG-43 However, the method does not consider the effects of patient dimensions and tissue heterogeneity. To overcome this challenge, this study proposed the use of energy spectrum analysis of the source model used. Materials and Methods: GEANT4 Monte Carlo simulation was used to build the geometry of Bebig Co-60 A86 source and radiation interaction system. The interaction physics used Penelope with 1.0 × 108 beam on. The scoring region was spherical with radius 20, 30, 40, and 50 cm as well as material variations of water, muscle, and bone. Results: The spectrum in Compton continuum scattering increased along with a reduction in radius and material density, while the opposite effect was observed at the photoelectric peak. The photoelectric peak ratio experienced 2.96 times increment when the radius of the muscle increased from 20 cm to 30 cm. In addition, the particle count experienced an increment as the radius and medium density of the scoring region increased, with linear regression values of 0.83 for bone and 0.91 for the water and muscle. Conclusion:  Increasing the radius and medium density led to variations in the height of the energy spectrum in Compton continuum and photoelectric regions. These variations caused an 18.42% increase in particle count when transitioning from 20 cm to 30 cm radius in water.
Keywords: Energy spectrum, Co-60, HDR brachytherapy, Monte Carlo.
Full-Text [PDF 812 kb]   (67 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. 1. Visser AG and Symonds RP (2001) Dose and volume specication for reporting gynaecological brachytherapy : time for a change. Radiother and Oncol, 58(2001): 1-4. [DOI:10.1016/S0167-8140(00)00323-6]
2. Guerrero R, Almansa JF, Torres J, et al. (2014) Dosimetric characterization of the 60Co BEBIG Co0.A86 high dose rate brachytherapy source using PENELOPE. Phys Medica, 30(8): 960-96. [DOI:10.1016/j.ejmp.2014.06.039]
3. Almansa JF, Guerrero R, Torres J, et al. (2017) Monte Carlo dosimetric characterization of the Flexisource Co-60 high-dose-rate brachytherapy source using PENELOPE. Brachytherapy, 16(5): 1073-1080. [DOI:10.1016/j.brachy.2017.04.245]
4. Granero D, Prez-Calatayud J, Ballester F (2007) Technical note: Dosimetric study of a new Co-60 source used in brachytherapy. Med Phys, 34(9): 3485-3488. [DOI:10.1118/1.2759602]
5. Joya M, Nedaie HA, Geraily G, et al. (2022) BEBIG 60Co HDR brachytherapy source dosimetric parameters validation using GATE Geant4-based simulation code. Heliyon, 8(3): e09168. [DOI:10.1016/j.heliyon.2022.e09168]
6. Campos LT and De Almeida CEV (2015) Monte Carlo dosimetry of the 60Co BEBIG high dose rate for brachytherapy. PLoS One, 10(9): 1-9. [DOI:10.1371/journal.pone.0139032]
7. Elboukhari S, Yamni K, Ouabi H, et al. (2020) Technical note: Dosimetric study for the new BEBIG 60Co HDR source used in brachytherapy in water and different media using Monte Carlo N-Particle eXtended code. Appl Radiat Isot, 159: 109087. [DOI:10.1016/j.apradiso.2020.109087]
8. Badry H, Oufni L, Ouabi H, et al. (2018) Monte Carlo investigation of the dose distribution for 60Co high dose rate brachytherapy source in water and in different media. Appl Radiat Isot 136: 104-110. [DOI:10.1016/j.apradiso.2018.02.016]
9. Beaulieu L, Carlsson Tedgren A, Carrier JF, et al. (2012) Report of the Task Group 186 on model-based dose calculation methods in brachytherapy beyond the TG-43 formalism: Current status and recommendations for clinical implementation. Med Phys, 39(10): 6208-6236. [DOI:10.1118/1.4747264]
10. Perez-Calatayud J, Ballester F, Das RK et al. (2012) Dose calculation for photon-emitting brachytherapy sources with average energy higher than 50 keV: Report of the AAPM and ESTRO. Med Phys, 39(5): 2904-2929. [DOI:10.1118/1.3703892]
11. Rivard MJ, Coursey BM, DeWerd LA, et al. (2004) Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations. Med Phys, 31(3): 633-674. [DOI:10.1118/1.1646040]
12. Wu J, Xie Y, Ding Z, Li F, et al. (2021) Monte Carlo study of TG‐43 dosimetry parameters of GammaMed Plus high dose rate 192 Ir brachytherapy source using TOPAS. J Appl Clin Med Phys, 22(6): 146-153. [DOI:10.1002/acm2.13252]
13. Seo H, Haque M, Hill R, et al. (2009) Effect of varying phantom size in dosimetry of iridium-192: A comparison of experimental data with EGSnrc Monte Carlo calculation. IFMBE Proc, 25(3): 396-399. [DOI:10.1007/978-3-642-03902-7_112]
14. Ababneh E, Dababneh S, Wadi-Ramahi S, et al. (2018) Physics elements of an algorithm for brachytherapy dose calculation in homogeneous media for 192Ir source. Radiat Phys Chem, 149: 90-103. [DOI:10.1016/j.radphyschem.2018.04.004]
15. Schoenfeld AA, Harder D, Poppe B, et al. (2015) Water equivalent phantom materials for 192Ir brachytherapy. Phys Med Biol, 60(24): 9403-9420. [DOI:10.1088/0031-9155/60/24/9403]
16. Akar Tarim U, Gurler O, Ozmutlu EN, et al. (2012) The energy spectrum of 662keV photons in a water equivalent phantom. Radiat Phys Chem, 81(7): 745-748. [DOI:10.1016/j.radphyschem.2012.03.019]
17. Moradi F, Khandaker MU, Alrefae T, et al. (2018). Monte Carlo simulations and analysis of transmitted gamma ray spectra through various tissue phantoms. Appl Radiat Isot, 146: 120-126. [DOI:10.1016/j.apradiso.2019.01.031]
18. EL Bakkali J, Doudouh A, Mansouri H (2018) Assessment of Monte Carlo Geant4 capabilities in prediction of photon beam dose distribution in a heterogeneous medium. Phys Med, 5: 1-5. [DOI:10.1016/j.phmed.2017.08.001]
19. Ababneh E, Dababneh S, Qatarneh S, et al. (2014) Enhancement and validation of Geant4 Brachytherapy application on clinical HDR 192Ir source. Radiat Phys Chem, 103: 57-66. [DOI:10.1016/j.radphyschem.2014.05.040]
20. Ab Shukor NS, Musarudin M, Abdullah R, et al. (2020) Effects of different volumes of inhomogeneous medium to the radial dose and anisotropy functions in HDR brachytherapy. J Phys Conf Ser, 1497(1): 691-708. [DOI:10.1088/1742-6596/1497/1/012027]
21. Grevillot L, Frisson T, Maneval D, et al. (2011) Simulation of a 6 MV Elekta Precise Linac photon beam using GATE/GEANT4. Phys Med Biol, 56(4): 903-918. [DOI:10.1088/0031-9155/56/4/002]
22. Dehghan ABY, Mostaar A, Azadeh P (2023). Implementation of geant4 application for tomography emission Monte Carlo Code in the calculation of dose distribution in external radiation therapy. Int J Radiat Res, 21(4): 663-673. [DOI:10.61186/ijrr.21.4.663]
23. Sahoo S, Selvam TP, Vishwakarma RS, et al. (2011). Monte Carlo modeling of 60 Co HDR brachytherapy source in water and in different solid water phantom materials. Jour of Med Phys, 35(1): 15-22. [DOI:10.4103/0971-6203.58779]
24. Bozkurt A and Sengul A (2021) Monte Carlo approach for calculation of mass energy absorption coefficients of some amino acids. Nucl Eng Technol. 53(9): 3044-3050. [DOI:10.1016/j.net.2021.04.004]
25. Mann-Krzisnik D, Verhaegen F, Enger SA (2018) The influence of tissue composition uncertainty on dose distributions in brachytherapy. Radiother Oncol, 126(3):394-410. [DOI:10.1016/j.radonc.2018.01.007]
26. Bechchar R, Senhou N, Ghassoun J (2019) A fast and accurate analytical method for 2D dose distribution calculation around brachytherapy sources in various tissue equivalent phantoms. Int J Radiat Res, 17(4): 531-540.
27. Ahmed SN (2007) Physics and Engineering of Radiation Detection: First edit. Academic Press is an imprint of Elsevier, Netherlands.
28. Fotina I, Zourari K, Lahanas V, et al. (2011) A comparative assessment of inhomogeneity and finite patient dimension effects in 60Co and 192Ir high-dose-rate brachytherapy. J Contemp Brachytherapy, 10(1): 73-84. [DOI:10.5114/jcb.2018.74327]
29. Jashni, Hojatollah Karimi, Safigholi H, et al. (2015) Influences of spherical phantom heterogeneities on dosimetric charactristics of miniature electronic brachytherapy X-ray sources: Monte Carlo study. Appl Radiat Isot, 95:108-113. [DOI:10.1016/j.apradiso.2014.10.014]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Qomariyah N, Haryanto F, Waris A, Wirawan R. Investigation of the effects of tissue material on the energy spectrum from Bebig Co-60 High Dose Rate Brachytherapy source based on the Monte Carlo simulation. Int J Radiat Res 2025; 23 (1) :97-102
URL: http://ijrr.com/article-1-5965-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 23, Issue 1 (1-2025) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.09 seconds with 50 queries by YEKTAWEB 4704