Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran , srmahdavi@hotmail.com
Abstract: (253 Views)
Background:The DVH is the most used radiotherapy formulation. DVH plays a fundamental role in determining dose constraints and side effects. Volume also plays the main role in calculating DVH. In prostate treatment, there is no comprehensive consensus on determining the association between bladder volume (BV) and side effects. Our aim is to investigate the reproducibility of bladder DVH (DVHB). D50%BV (dose received by 50% of BV) is used to analysis DVHB. Materials and Methods: We contoured the bladder of 467 daily MVCT images of fifteen prostate cancer patients who underwent tomotherapy. Using R software 4.2.3, the correlation between the bladder center of mass (XCM, YCM, ZCM), BV with D50%BV were modeled by the mixed model. Two prediction models were presented for D50%BV, the first model was based on BV and (XCM, YCM, ZCM), the second model was based on BV. Results: Statistical analyses revealed that independent factors YCM, ZCM, and BV have a significant influence on the response variable D50%BV. According to mixed model, YCM has a positive correlation with D50%BV, while ZCM or BV has a negative correlation. XCM does not significantly affect D50%BV. Akaike Information Criterion (AIC) index indicated that first model has a higher goodness of fit than second one. Conclusion: Our findings demonstrate that bladder location also affects D50%BV, in addition to BV. It can be concluded that DVHB is not always repeatable as a scientific claim.
1. 1. Alonso-Arrizabalaga S, González LB, Ferrando JVR, Peidro JP, Torrecilla JL, Meseguer DP, et al. (2007) Prostate planning treatment volume margin calculation based on the ExacTrac X-Ray 6D image-guided system: margins for various clinical implementations. Int J Radiat Oncol Biol Phys, 69(3): 936-43. [DOI:10.1016/j.ijrobp.2007.06.063]
2. Dolezel M, Odrazka K, Vaculikova M, Vanasek J, Sefrova J, Paluska P, et al. (2010) Dose escalation in prostate radiotherapy up to 82 Gy using simultaneous integrated boost. Strahlentherapie und Onkologie, 186(4): 197. [DOI:10.1007/s00066-010-2065-x]
3. Adamson J and Wu Q (2008) Prostate intrafraction motion evaluation using kV fluoroscopy during treatment delivery: a feasibility and accuracy study. Med Phys, 35(5): 1793-806. [DOI:10.1118/1.2899998]
4. Drzymala R, Mohan R, Brewster L, Chu J, Goitein M, Harms W, et al. (1991) Dose-volume histograms. Int J Radiat Oncol Biol Phys, 21(1): 71-8. [DOI:10.1016/0360-3016(91)90168-4]
5. Lebesque JV, Bruce AM, Kroes AG, Touw A, Shouman T, van Herk M (1995) Variation in volumes, dose-volume histograms, and estimated normal tissue complication probabilities of rectum and bladder during conformal radiotherapy of T3 prostate cancer. Int J Radiat Oncol Biol Phys, 33(5): 1109-19. [DOI:10.1016/0360-3016(95)00253-7]
6. Mullaney LM, O'Shea E, Dunne MT, Finn MA, Thirion PG, Cleary LA, et al. (2014) A randomized trial comparing bladder volume consistency during fractionated prostate radiation therapy. Pract Radiat Oncol, 4(5): e203-e12. [DOI:10.1016/j.prro.2013.11.006]
7. Chen Z, Yang Z, Wang J, Hu W (2016) Dosimetric impact of different bladder and rectum filling during prostate cancer radiotherapy. Radiation Oncology, 11: 1-8. [DOI:10.1186/s13014-016-0681-z]
8. Tsang YM and Hoskin P (2017) The impact of bladder preparation protocols on post treatment toxicity in radiotherapy for localised prostate cancer patients. Technical Innovations & Patient Support in Radiation Oncology, 3: 37-40. [DOI:10.1016/j.tipsro.2017.10.001]
9. Pang EPP, Knight K, Hussain A, Fan Q, Baird M, Tan SXF, et al. (2018) Reduction of intra-fraction prostate motion-determining optimal bladder volume and filling for prostate radiotherapy using daily 4D TPUS and CBCT. Tech Innov Pat Sup Radiat Oncol, 5: 9-15. [DOI:10.1016/j.tipsro.2018.01.003]
10. Grün A, Kawgan-Kagan M, Kaul D, Badakhshi H, Stromberger C, Budach V, et al. (2019) Impact of bladder volume on acute genitourinary toxicity in intensity modulated radiotherapy for localized and locally advanced prostate cancer. Strahlentherapie und Onkologie, 195(6): 517-25. [DOI:10.1007/s00066-018-1398-8]
11. Olsson CE, Jackson A, Deasy JO, Thor M (2018) A systematic post-QUANTEC review of tolerance doses for late toxicity after prostate cancer radiation therapy. Int J Radiat Oncol Biol Phys,102(5): 1514-32. [DOI:10.1016/j.ijrobp.2018.08.015]
12. Braide K, Kindblom J, Lindencrona U, Månsson M, Hugosson J (2019) The value of a bladder-filling protocol for patients with prostate cancer who receive post-operative radiation: results from a prospective clinical trial. Acta Oncologica, 58(4): 463-8. [DOI:10.1080/0284186X.2018.1554261]
13. Chetiyawardana G, Hoskin PJ, Tsang YM (2020) The implementation of an empty bladder filling protocol for localised prostate volumetric modulated arctherapy (VMAT): early results of a single institution service evaluation. The British Journal of Radiology, 93(1114): 20200548. [DOI:10.1259/bjr.20200548]
14. Munafò MR, Nosek BA, Bishop DV, Button KS, Chambers CD, Percie du Sert N, et al. (2017) A manifesto for reproducible science. Nature Human Behaviour, 1(1): 1-9. [DOI:10.1038/s41562-016-0021]
15. Harris JK, Combs TB, Johnson KJ, Carothers BJ, Luke DA, Wang X (2019) Three changes public health scientists can make to help build a culture of reproducible research. Public Health Reports, 134(2): 109-11. [DOI:10.1177/0033354918821076]
16. Meehl PE (1967) Theory-testing in psychology and physics: A methodological paradox. Philosophy of Science, 34(2): 103-15. [DOI:10.1086/288135]
17. Chen MJ, Weltman E, Hanriot RM, Luz FP, Cecílio PJ, Da Cruz JC, et al. (2007) Intensity modulated radiotherapy for localized prostate cancer: rigid compliance to dose-volume constraints as a warranty of acceptable toxicity? Radiation Oncology, 2: 1-7. [DOI:10.1186/1748-717X-2-6]
18. Pinkawa M, Asadpour B, Gagel B, Piroth MD, Holy R, Eble MJ (2006) Prostate position variability and dose-volume histograms in radiotherapy for prostate cancer with full and empty bladder. Int J Radiat Oncol Biol Phys, 64(3): 856-61. [DOI:10.1016/j.ijrobp.2005.08.016]
19. Jorgo K, Ágoston P, Major T, Takácsi-Nagy Z, Polgár C (2017) Transperineal gold marker implantation for image-guided external beam radiotherapy of prostate cancer. Strahlentherapie und Onkologie, 193(6): 452. [DOI:10.1007/s00066-017-1104-2]
20. Gurjar OP, Arya R, Goyal H (2020) A study on prostate movement and dosimetric variation because of bladder and rectum volumes changes during the course of image-guided radiotherapy in prostate cancer. Prostate International, 8(2): 91-7. [DOI:10.1016/j.prnil.2019.12.003]
21. Smith GA, Dunlop A, Barnes H, Herbert T, Lawes R, Mohajer J, et al. (2022) Bladder filling in patients undergoing prostate radiotherapy on a MR-linac: The dosimetric impact. Tech Innov Pat Sup Radiat Oncol, 21: 41-5. [DOI:10.1016/j.tipsro.2022.02.002]
22. Nakamura N, Shikama N, Takahashi O, Ito M, Hashimoto M, Uematsu M, et al. (2010) Variability in bladder volumes of full bladders in definitive radiotherapy for cases of localized prostate cancer. Strahlentherapie und Onkologie, 186(11): 637. [DOI:10.1007/s00066-010-2105-6]
23. Pederson AW, Fricano J, Correa D, Pelizzari CA, Liauw SL (2012) Late toxicity after intensity-modulated radiation therapy for localized prostate cancer: an exploration of dose-volume histogram parameters to limit genitourinary and gastrointestinal toxicity. Int J Radiat Oncol Biol Phys, 82(1): 235-41. [DOI:10.1016/j.ijrobp.2010.09.058]
24. Kupelian PA, Langen KM, Zeidan OA, Meeks SL, Willoughby TR, Wagner TH, et al. (2006) Daily variations in delivered doses in patients treated with radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys, 66(3): 876-82. [DOI:10.1016/j.ijrobp.2006.06.011]
25. Rowe LS, Mandia JJ, Salerno KE, Shankavaram UT, Das S, Escorcia FE, et al. (2022) Bowel and bladder reproducibility in image guided radiation therapy for prostate cancer: results of a patterns of practice survey. Advances in Radiation Oncology, 7(5): 100902. [DOI:10.1016/j.adro.2022.100902]
26. Carillo V, Cozzarini C, Chietera A, Perna L, Gianolini S, Maggio A, et al. (2012) Correlation between surrogates of bladder dosimetry and dose-volume histograms of the bladder wall defined on MRI in prostate cancer radiotherapy. Radiotherapy and Oncology, 105(2): 180-3. [DOI:10.1016/j.radonc.2012.10.001]
27. Matzinger O, Duclos F, Van den Bergh A, Carrie C, Villà S, Kitsios P, et al. (2009) Acute toxicity of curative radiotherapy for intermediate-and high-risk localised prostate cancer in the EORTC trial 22991. European Journal of Cancer, 45(16): 2825-34. [DOI:10.1016/j.ejca.2009.07.009]
28. Lovelock DM, Messineo AP, Cox BW, Kollmeier MA, Zelefsky MJ (2015) Continuous monitoring and intrafraction target position correction during treatment improves target coverage for patients undergoing SBRT prostate therapy. Int J Radiat Oncol Biol Phys, 91(3): 588-94. [DOI:10.1016/j.ijrobp.2014.10.049]
29. Mylona E, Acosta O, Lizee T, Lafond C, Crehange G, Magné N, et al. (2019) Voxel-based analysis for identification of urethrovesical subregions predicting urinary toxicity after prostate cancer radiation therapy. Int J Radiat Oncol Biol Phys, 104(2): 343-54. [DOI:10.1016/j.ijrobp.2019.01.088]
30. Barillot I, Horiot J, Maingon P, Bone-Lepinoy M, Vaillant D, Feutray S (1994) Maximum and mean bladder dose defined from ultrasonography. Comparison with the ICRU reference in gynaecological brachytherapy. Radiotherapy and Oncology, 30(3): 231-8. [DOI:10.1016/0167-8140(94)90463-4]
31. Simforoosh N, Dadkhah F, Hosseini S, Asgari M, Nasseri A, Safarinejad M (1997) Accuracy of residual urine measurement in men: comparison between real-time ultrasonography and catheterization. The Journal of Urology, 158(1): 59-61. [DOI:10.1097/00005392-199707000-00016]
Goli-Ahmadabad F, Mahdavi S, Nikoofar A, Zare-Sadeghi A, Vazirinasab H, Bagherzadeh S, et al . Investigation of the reproducibility of bladder dose- volume histogram (DVH) in prostate tomotherapy using the center of mass of the bladder in daily megavoltage computed tomography (MVCT) images. Int J Radiat Res 2025; 23 (1) :111-120 URL: http://ijrr.com/article-1-5971-en.html