[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 23, Issue 1 (1-2025) ::
Int J Radiat Res 2025, 23(1): 141-146 Back to browse issues page
Estimation of peak skin dose in cardiac interventional procedure using radiation dose structured report-an indirect method
S.S. Nair , S.K. Gupta , N.S. Shine , K.T. Thomas , V. George , P. Thomas , M.K. Gopakumar , S.S. Nair
Department of Physical Science, Banasthali Vidyapith, Jaipur, India , sajeeshranny@gmail.com
Abstract:   (352 Views)
Background: The purpose of this study is to estimate PSD indirectly using a Radiation Dose Structured Report (RDSR) from Cath lab interventional procedures. The estimated dose was then compared with direct measurements using films. Materials and Methods: Information on radiation exposure and dosage associated with a specific interventional radiology procedure is provided in the RDSR document. The RDSR produced by the machine was verified using slab phantom, Gafchromic XRV3 film, and Ray Safe X2 detector. The PSD is estimated by adding the intensely projected beam dose in acquisition mode with the fluoroscopic dose percentage obtained from the RDSR. During the procedure, Gafchromic films were used to measure PSD directly. Then, the estimated PSD was compared with the measured PSD. Result: The PSDmes and PSDcal in this study showed an average difference of 0.12 Gy (8%). The Wilcoxon Signed-Rank test has a p-value of 0.08 and the Spearman's rank correlation coefficient (rs) of 0.97 indicates a very strong positive correlation between the two variables. Conclusion: The Statistical analysis shows that the estimation of PSD using RDSR is reliable for monitoring the patient. This method may help the cardiologist to follow up of the patients to give extra care to skin reactions. A safe standard work practice will certainly monitor the prevention of undesirable consequences of radiation.
Keywords: Interventional radiology, radiation dose, cardiologist, patient, follow up.
Full-Text [PDF 1094 kb]   (42 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. 1. Clement CH, Lo'pez PO, Dauer LT, Loose R, Martin CJ, Miller DL, et al. (2018) ICRP publication 139. Vol. 47, Annals o f the ICRP. 2018.
2. Bangalore S, Barsness GW, Dangas GD, Kern MJ, Rao S V., Shore-Lesserson L, et al. (2021) Evidence-based practices in the cardiac catheterization laboratory: A scientific statement from the American heart association. Circulation, 144(5): E107-19. [DOI:10.1161/CIR.0000000000000996]
3. Arramraju SK, Janapati RK, Sanjeeva Kumar E, Mandala GR (2020) National interventional council data for the year 2018-India. Indian Heart J [Internet], 72(5): 351-5. [DOI:10.1016/j.ihj.2020.07.018]
4. Faulkner K and Vañó E (2001) Deterministic effects in interventional radiology. Radiat Prot Dosimetry, 94: 95-8. [DOI:10.1093/oxfordjournals.rpd.a006489]
5. Koenig TR, Mettler FA, Wagner LK (2001) Skin injuries from fluoroscopically guided procedures: Part 2, review of 73 cases and recommendations for minimizing dose delivered to patient. Am J Roentgenol, 177(1): 13-20. [DOI:10.2214/ajr.177.1.1770013]
6. Beştemir A, Apaydın Z, Kılınç AY (2023) Analysis of coronary angiography and revascularization rates made over 5 years in public institutions in Türkiye. Anatol J Cardiol, 27(9): 529-33. [DOI:10.14744/AnatolJCardiol.2023.3112]
7. Malik TF and Tivakaran VS (2018) percutaneous transluminal coronary angioplasty. StatPearls Publishing, NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health. 2018. pp. 1-5.
8. Bundy JJ, McCracken IW, Shin DS, Monroe EJ, Johnson GE, Ingraham CR, et al. (2020) Fluoroscopically-guided interventions with radiation doses exceeding 5000 mGy reference point air kerma: a dosimetric analysis of 89,549 interventional radiology, neurointerventional radiology, vascular surgery, and neurosurgery encounters. CVIR Endovasc, 3(1): 1-8. [DOI:10.1186/s42155-020-00159-6]
9. Chaikh A, Gaudu A, Balosso J (2014) Monitoring methods for skin dose in interventional radiology. Int J Cancer Ther Oncol, 3(1): 1-8. [DOI:10.14319/ijcto.0301.1]
10. Jones AK, Ensor JE, Pasciak AS (2014) How accurately can the peak skin dose in fluoroscopy be determined using indirect dose metrics? Med Phys, 41(7): 4-11. [DOI:10.1118/1.4884020]
11. Taghi M, Toossi B, Khosroabadi M, Mehrpouyan M, Moghaddam R (2020) Assessment of maximum entrance skin dose of patients undergoing cardiac interventional procedures and its correlation with other dosimetric parameters. Iran J Med Phys, 85: 235-46.
12. Gonza L, Guibelalde E, Ferna JM, Ten JI (1998) Radiation exposure to medical staff in interventional and cardiac radiology. The British Journal of Radiology, 71(849): 954-60. [DOI:10.1259/bjr.71.849.10195011]
13. Chu R, Thomas G, Maqbool F (2005) Skin entrance radiation dose in an interventional radiology procedure. Health Phys, 32(6): 1908. [DOI:10.1118/1.1997499]
14. Jones AK and Pasciak AS (2012) Calculating the peak skin dose resulting from fluoroscopically-guided interventions. Part II: Case studies. J Appl Clin Med Phys,13(1): 174-86. [DOI:10.1120/jacmp.v13i1.3693]
15. Jones AK and Pasciak AS (2014) Calculating the peak skin dose resulting from fluoroscopically guided interventions. Part I: Methods. J Appl Clin Med Phys, 15(4): 402. [DOI:10.1120/jacmp.v15i4.4986]
16. Greffier J, Grussenmeyer-Mary N, Hamard A, Goupil J, Miller DE, Cayla G, et al. (2020) Clinical evaluation of a dose management system-integrated 3D skin dose map by comparison with radiochromic films. Eur Radiol, 30(9): 5071-81. [DOI:10.1007/s00330-020-06877-8]
17. Sharma J and Sarma J (2021) Patient Effective Dose profile in CATHLAB. Scirea J Med, 5(3): 16-33. [DOI:10.54647/pm31129]
18. Dini SA, Koona RA, Ashburn JR, Meigoonia AS (2005) Dosimetric evaluation of GAFCHROMIC XR type T and XR type R films. J Appl Clin Med Phys, 6: 114-34. [DOI:10.1120/jacmp.v6i1.2051]
19. Magnier F, Poulin M, Van Ngoc Ty C, Osmond E, Bonniaud G, Coulot J, et al. (2018) Comparison of patient skin dose evaluated using radiochromic film and dose calculation software. Cardiovasc Intervent Radiol, 41(5): 762-71. [DOI:10.1007/s00270-018-1888-1]
20. Howard ME, Herman MG, Grams MP (2020) Methodology for radiochromic film analysis using FilmQA Pro and ImageJ. PLoS One, 15(5): 1-12. [DOI:10.1371/journal.pone.0233562]
21. Abràmoff MD, Magalhães PJ, Ram SJ (2005) Image processing with ImageJ Part II. Biophotonics Int, 11(7): 36-43.
22. Cousins C, Miller DL, Bernardi G, Rehani MM, Schofield P, Van˜o' E, et al. (2013). Annals of the ICRP. ICRP, 120: 42. [DOI:10.1016/j.icrp.2012.09.001]
23. Guan F, Wang X, Yang M, Draeger EDH, Iga K, Guo F, et al. (2023) Precision radiation oncology - 2023 - guan - dosimetric response of gafchromic EBT‐XD film to therapeutic protons. Prec Radiat Oncol, 7: 15-26. [DOI:10.1002/pro6.1187]
24. Title avaliable online https://imagej.nih.gov/nih-image/manual/menus/analyze.html. Provide title, authors and date and place of publication.
25. McCabe BP, Speidel MA, Pike TL, Van Lysel MS (2011) Calibration of GafChromic XR-RV3 radiochromic film for skin dose measurement using standardized x-ray spectra and a commercial flatbed scanner. Med Phys, 38(4): 1919-30. [DOI:10.1118/1.3560422]
26. Niroomand-Rad A, Chiu-Tsao ST, Grams MP, Lewis DF, Soares CG, Van Battum LJ, et al. (2020) Report of AAPM Task Group 235 Radiochromic Film Dosimetry: An Update to TG-55. Medical Physics, 47: 5986-6025. [DOI:10.1002/mp.14497]
27. Balter S, Fletcher DW, Kuan HM, Miller D (2002) Techniques to estimate radiation dose to skin during fluoroscopically guided procedures. AAPM Summer Sch Proc, 1-10.
28. Karun KM and Puranik A (2021) BA.plot: An R function for Bland-Altman analysis. Clin Epidemiol Glob Heal, 12: 100831. [DOI:10.1016/j.cegh.2021.100831]
29. Pantos I, Patatoukas G, Katritsis D, Efstathopoulos E (2009) Patient radiation doses in interventional cardiology procedures. Curr Cardiol Rev, 5(1): 1-11. [DOI:10.2174/157340309787048059]
30. Meghzifene A, Dance DR, McLean D, Kramer HM (2010) Dosimetry in diagnostic radiology. Eur J Radiol, 76(1): 11-4. [DOI:10.1016/j.ejrad.2010.06.032]
31. US food and drug administration. CFR ­ Code of Federal Regulations Title 21 [Internet]. Vol. 8, CITE: 21CFR1020.32 performance standards for ionizing radiation emitting products Sec. 2023. p. 6. Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=58&showFR=1&subpartNode=21:1.0.1.1.23.1
32. Balter S, Hopewell JW, Miller DL, Wagner LK, Zelefsky MJ (2010) Fluoroscopically guided interventional procedures: A review of radiation effects on patients' skin and hair. Radiology, 254(2): 326-41. [DOI:10.1148/radiol.2542082312]
33. Stecker MS, Balter S, Towbin RB, Miller DL, Vañó E, Bartal G, et al. (2009) Guidelines for patient radiation dose management. J Vasc Interv Radiol, 20 (7 Suppl.): S263-73. [DOI:10.1016/j.jvir.2009.04.037]
34. Sun Z, Abaziz A, Khairuddin Md Yusof A (2013) Radiation-induced noncancer risks in interventional cardiology: Optimisation of procedures and staff and patient dose reduction. Biomed Res Int, 2013: 1-11. [DOI:10.1155/2013/976962]
35. Takata T, Kotoku J, Maejima H, Kumagai S, Arai N, Kobayashi T, et al. (2018) Fast skin dose estimation system for interventional radiology. J Radiat Res, 59(2): 233-9. [DOI:10.1093/jrr/rrx062]
36. Feghali JA, Delépierre J, Belac OC, Dabin J, Deleu M, De Monte F, et al. (2021) Establishing a priori and a posteriori predictive models to assess patients' peak skin dose in interventional cardiology. Part 2: results of the VERIDIC project. Acta radiol, 64(1): 125-38. [DOI:10.1177/02841851211062089]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nair S, Gupta S, Shine N, Thomas K, George V, Thomas P, et al . Estimation of peak skin dose in cardiac interventional procedure using radiation dose structured report-an indirect method. Int J Radiat Res 2025; 23 (1) :141-146
URL: http://ijrr.com/article-1-5987-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 23, Issue 1 (1-2025) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.09 seconds with 50 queries by YEKTAWEB 4704