[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 23, Issue 1 (1-2025) ::
Int J Radiat Res 2025, 23(1): 175-183 Back to browse issues page
MicroRNA-18a-5p targets Sec61 translocon alpha 1 subunit to repress hepatocellular carcinoma cell growth before chromradiotherapy
Q. Chen , M.M. Wang , X-K. Meng , Q.L. Wu
Abstract:   (323 Views)
Background: Hepatocellular carcinoma (HCC) cell development was investigated in relation to the regulation of Sec61 translocon alpha 1 subunit (SEC61A1) by microRNA (miR)-18a-5p. Materials and Methods: After collection of clinical samples, the transfection of interfering vectors of miR-18a-5p or SEC61A1 was into HCC cells to figure out their roles in development of HCC. The Pearson test and starBase analyzed the association and target prediction of miR-18a-5p. Subsequently, through the dual luciferase reporter experiment, SEC61A1 can be regulated via miR-18a-5p. The salvage experiment revealed that miR-18a-5p influence the degradation process of Hepatocellular carcinoma through combining SEC61A1. Results: In HCC cells, we found that SEC61A1 was elevated and miR-18a-5p was downregulated. HCC cells deteriorating was considerably slowed down by the enhanced miR-18a-5p level. The outcomes demonstrated that miR-18a-5p can interact and regulate SEC61A1. Additionally, the effects of earlier therapy on HCC cell proliferation can be restored by overexpressing SEC61A1. Conclusion: Overall, in HCC cells and tissues miR-18a-5p was significantly downregulated, and inhibited the proliferative ability of HCC cells by targeting SEC61A1.
Keywords: MicroRNA-18a-5p, Sec61 translocon alpha 1 subunit, hepatocellular carcinoma.
Full-Text [PDF 3117 kb]   (46 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. 1. Cong WM, Bu H, Chen J, et al. (2016) Practice guidelines for the pathological diagnosis of primary liver cancer: 2015 update. World J Gastroenterol, 22(42): 9279-9287. [DOI:10.3748/wjg.v22.i42.9279]
2. Shiani A, Narayanan S, Pena L, et al. (2017) The role of diagnosis and treatment of underlying liver disease for the prognosis of primary liver cancer. Cancer Control, 24(3): 1073274817729240. [DOI:10.1177/1073274817729240]
3. Qu CF, Chen TY, Wang YT, et al. (2018) Primary prevention model of liver cancer in rural China. Zhonghua Zhong Liu Za Zhi, 40(7): 481-489.
4. Bosch FX, Ribes J, Díaz M, et al. (2004) Primary liver cancer: worldwide incidence and trends. Gastroenterology, 127(5 Suppl 1): S5-s16. [DOI:10.1053/j.gastro.2004.09.011]
5. Tunissiolli NM, Castanhole-Nunes MMU, Biselli-Chicote PM, et al. (2017) Hepatocellular carcinoma: a comprehensive review of biomarkers, clinical aspects, and therapy. Asian Pac J Cancer Prev, 18(4): 863-872.
6. Sulas P, Di Tommaso L, Novello C, et al. (2018) A large set of miRNAs is dysregulated from the earliest steps of human hepatocellular carcinoma development. Am J Pathol, 188(3): 785-794. [DOI:10.1016/j.ajpath.2017.10.024]
7. Liu C, Wu H, Mao Y, et al. (2021) Exosomal microRNAs in hepatocellular carcinoma. Cancer Cell Int, 21(1): 254. [DOI:10.1186/s12935-021-01941-9]
8. Rupaimoole R, Calin GA, Lopez-Berestein G, et al. (2016) miRNA deregulation in cancer cells and the tumor microenvironment. Cancer Discov, 6(3): 235-46. [DOI:10.1158/2159-8290.CD-15-0893]
9. Shukla GC, Singh J, Barik S (2011) MicroRNAs: processing, maturation, target recognition and regulatory functions. Mol Cell Pharmacol, 3(3): 83-92.
10. Zhang J, Wang L, Jiang J, et al. (2020) The lncRNA SNHG15/miR-18a-5p axis promotes cell proliferation in ovarian cancer through activating Akt/mTOR signaling pathway. J Cell Biochem, 121(12): 4699-4710. [DOI:10.1002/jcb.29474]
11. Zheng P, Dong L, Zhang B, et al. (2019) Long noncoding RNA CASC2 promotes paclitaxel resistance in breast cancer through regulation of miR-18a-5p/CDK19. Histochem Cell Biol, 152(4): 281-291. [DOI:10.1007/s00418-019-01794-4]
12. Zheng Y, Nie P, Xu S (2020) Long noncoding RNA linc00467 plays an oncogenic role in hepatocellular carcinoma by regulating the miR-18a-5p/NEDD9 axis. J Cell Biochem, 121(5-6): 3135-3144. [DOI:10.1002/jcb.29581]
13. Lang S, Pfeffer S, Lee PH, et al. (2017) An update on sec61 channel functions, mechanisms, and related diseases. Front Physiol, 8: 887. [DOI:10.3389/fphys.2017.00887]
14. Linxweiler M, Schick B, Zimmermann R (2017) Let's talk about Secs: Sec61, Sec62 and Sec63 in signal transduction, oncology and personalized medicine. Signal Transduct Target Ther, 2: 17002. [DOI:10.1038/sigtrans.2017.2]
15. Davila S, Furu L, Gharavi AG, et al. (2004) Mutations in SEC63 cause autosomal dominant polycystic liver disease. Nat Genet, 36(6): 575-7. [DOI:10.1038/ng1357]
16. Besse W, Dong K, Choi J, et al. (2017) Isolated polycystic liver disease genes define effectors of polycystin-1 function. J Clin Invest, 127(5): 1772-1785. [DOI:10.1172/JCI90129]
17. Synofzik M, Haack TB, Kopajtich R, et al. (2014) Absence of BiP co-chaperone DNAJC3 causes diabetes mellitus and multisystemic neurodegeneration. Am J Hum Genet, 95(6): 689-97. [DOI:10.1016/j.ajhg.2014.10.013]
18. Ye Y, Gu B, Wang Y, et al. (2019) E2F1-mediated MNX1-AS1-miR-218-5p-SEC61A1 feedback loop contributes to the progression of colon adenocarcinoma. J Cell Biochem, 120(4): 6145-6153. [DOI:10.1002/jcb.27902]
19. Cao C, Zhou S, Hu J (2020) Long noncoding RNA MAGI2-AS3/miR-218-5p/GDPD5/SEC61A1 axis drives cellular proliferation and migration and confers cisplatin resistance in nasopharyngeal carcinoma. Int Forum Allergy Rhinol, 10(8): 1012-1023. [DOI:10.1002/alr.22562]
20. Fa X, Song P, Fu Y, et al. (2021) Long non-coding RNA VPS9D1-AS1 facilitates cell proliferation, migration and stemness in hepatocellular carcinoma. Cancer Cell Int, 21(1): 131. [DOI:10.1186/s12935-020-01741-7]
21. Hall RA (2015) Studying protein-protein interactions via blot overlay/far western blot. Methods Mol Biol, 1278: 371-9. [DOI:10.1007/978-1-4939-2425-7_24]
22. Ding Y, Qian L, Wang L, et al. (2020) Relationship among porcine lncRNA TCONS_00010987, miR-323, and leptin receptor based on dual luciferase reporter gene assays and expression patterns. Asian-Australas J Anim Sci, 33(2): 219-229. [DOI:10.5713/ajas.19.0065]
23. Forner A, Llovet JM, Bruix J (2012) Hepatocellular carcinoma. Lancet, 379(9822): 1245-55. [DOI:10.1016/S0140-6736(11)61347-0]
24. Lujambio A, Calin GA, Villanueva A, et al. (2008) A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci USA, 105(36): 13556-61. [DOI:10.1073/pnas.0803055105]
25. Feliciano A, Garcia-Mayea Y, Jubierre L, et al. (2017) miR-99a reveals two novel oncogenic proteins E2F2 and EMR2 and represses stemness in lung cancer. Cell Death Dis, 8(10): e3141. [DOI:10.1038/cddis.2017.544]
26. Lei B, Wang D, Zhang M, et al. (2020) miR-615-3p promotes the epithelial-mesenchymal transition and metastasis of breast cancer by targeting PICK1/TGFBRI axis. J Exp Clin Cancer Res, 39(1): 71. [DOI:10.1186/s13046-020-01571-5]
27. Yin H, Wang Y, Wu Y, et al. (2020) EZH2-mediated Epigenetic Silencing of miR-29/miR-30 targets LOXL4 and contributes to tumorigenesis, metastasis, and immune microenvironment remodeling in breast cancer. Theranostics, 10(19): 8494-8512. [DOI:10.7150/thno.44849]
28. Li S, Li X, Xing X, et al. (2020) miR-597-5p inhibits cell growth and promotes cell apoptosis by targeting ELK1 in pancreatic cancer. Hum Cell, 33(4): 1165-1175. [DOI:10.1007/s13577-020-00395-x]
29. Wu H, Li F, Zhu R (2021) miR-338-5p inhibits cell growth and migration via inhibition of the METTL3/m6A/c-Myc pathway in lung cancer. Acta Biochim Biophys Sin (Shanghai), 53(3): 304-316. [DOI:10.1093/abbs/gmaa170]
30. Neilson JR, Zheng GX, Burge CB, et al. (2007) Dynamic regulation of miRNA expression in ordered stages of cellular development. Genes Dev, 21(5): 578-89. [DOI:10.1101/gad.1522907]
31. Lu J, Getz G, Miska EA, et al. (2005) MicroRNA expression profiles classify human cancers. Nature, 435(7043): 834-8. [DOI:10.1038/nature03702]
32. Tsai CC, Chen TY, Tsai KJ, et al. (2020) NF-κB/miR-18a-3p and miR-4286/BZRAP1 axis may mediate carcinogenesis in helicobacter pylori-associated gastric cancer. Biomed Pharmacother, 132: 110869. [DOI:10.1016/j.biopha.2020.110869]
33. Cui M, Qu F, Wang L, et al. (2021) MiR-18a-5p facilitates progression of hepatocellular carcinoma by targeting CPEB3. Technol Cancer Res Treat, 20: 15330338211043976. [DOI:10.1177/15330338211043976]
Add your comments about this article
Your username or Email:

CAPTCHA


XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Chen Q, Wang M, Meng X, Wu Q. MicroRNA-18a-5p targets Sec61 translocon alpha 1 subunit to repress hepatocellular carcinoma cell growth before chromradiotherapy. Int J Radiat Res 2025; 23 (1) :175-183
URL: http://ijrr.com/article-1-6002-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 23, Issue 1 (1-2025) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.09 seconds with 50 queries by YEKTAWEB 4704