[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 23, Issue 2 (5-2025) ::
Int J Radiat Res 2025, 23(2): 305-309 Back to browse issues page
Image Quality and Radiation Dose of Portal Venous Imaging by Dual-Source Computed Tomography Single Energy Technology
X. Li , Z. Liang , Y. Duan , W. Liu , Z. Han , R. Wang
Department Radiology Department, Beijing Shijitan Hospital, Beijing 100038, China , wangrenguibj@163.com
Abstract:   (611 Views)
Background: The design of this work was to explore the feasibility of optimizing computed tomography (CT) portal vein image quality and radiation dose by virtual single-energy imaging technology. Materials and Methods: Nighty-two patients who underwent dual-source CT (DSCT) examination in our hospital from September 2021 and August 2022 were selected as the study objects. They received CT scanning (90/Sn150 kV) and the images of 40 keV to 100 keV and M_0.6 linear fusion were obtained. The signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), subjective image quality, and radiation dose of different models were calculated. Results: Statistical significance in the subjective score of image quality was tested among all groups, and the 40 keV group had the highest score. The SD values in 40 keV to 60 keV were elevated, while were declined in 80 keV to 100 keV compared with the M_0.6 fusion image. CNR values in 40 keV to 70 keV groups were significantly higher, and in 90 keV to 100 keV were lower than those in M_0.6 group. SNR in the 40 keV group was significantly better than that in M_0.6 group. The average radiation doses were 6.12 ± 1.30 CTDIvol (mGy) and the radiation dose length product (DLP) was 304.3 ± 87.67 (mGy.cm). Conclusion: DSCT virtual single energy reconstruction technology could greatly improve image quality, and 40 keV single energy reconstruction had the best image quality.
Keywords: Computed tomography, radiographic image enhancement, portal vein, radiation dosage, signal-to-noise ratio.
Full-Text [PDF 671 kb]   (131 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. Zane KE, Makary MS (2021) Locoregional therapies for hepatocellular carcinoma with portal vein tumor thrombosis. Cancers, 13(21): 5430. [DOI:10.3390/cancers13215430]
2. Senzolo M, Garcia-Tsao G, Garcia-Pagan JC (2021) Current knowledge and management of portal vein thrombosis in cirrhosis. J Hepatol, 75(2): 442-53. [DOI:10.1016/j.jhep.2021.04.029]
3. Cruz-Ramon V, Chinchilla-Lopez P, Ramirez-Perez O, Aguilar-Olivos NE, Alva-Lopez LF, Fajardo-Ordonez E, et al. (2018) Thrombosis of the portal venous system in cirrhotic vs. non-cirrhotic patients. Ann Hepatol, 17(3): 476-81. [DOI:10.5604/01.3001.0011.7392]
4. Galante A and De Gottardi A (2021) Portal vein thrombosis: an overview of current treatment options. Acta Gastroenterol Belg, 84(2): 327-32. [DOI:10.51821/84.2.327]
5. Zaw ST, Zaw T, El-Far A (2022) Acute mesenteric ischemia secondary to superior mesenteric vein thrombosis. Cureus, 14(10): e30819. [DOI:10.7759/cureus.30819]
6. Sun B and Wang Z (2024) The application value of computed tomography perfusion imaging in diagnosing early cerebral infarction. International Journal of Radiation Research, 22(1): 139-43. [DOI:10.61186/ijrr.22.1.139]
7. Zhao P, Xu Y, Xie C, Zhan M, Qian Y, Gao Z (2024) Assessment of the effectiveness of neoadjuvant chemotherapy for rectal cancer by MRI and PETCT: a meta-analysis. International Journal of Radiation Research, 22(1): 85-90. [DOI:10.61186/ijrr.22.1.85]
8. Baliyan V, Kordbacheh H, Serrao J, Sahani DV, Kambadakone AR (2018) Dual-source dual-energy ct portal venous phase abdominal ct scans in large body habitus patients: preliminary observations on image quality and material decomposition. J Comput Assist Tomogr, 42(6): 932-6. [DOI:10.1097/RCT.0000000000000804]
9. Lu Z, Wu S, Yan C, Chen J, Li Y (2021) Clinical value of energy spectrum curves of dual-energy computer tomography may help to predict pathological grading of gastric adenocarcinoma. Translational cancer research, 10(1): 1-9. [DOI:10.21037/tcr-20-1269]
10. Chen Q and Zhang C (2023) Dual-source CT imaging in evaluating cardiovascular function after coronary artery bypass grafting. International Journal of Radiation Research, 21(4): 837-40. [DOI:10.61186/ijrr.21.4.837]
11. Wang T, Han Y, Lin L, Yu C, Lv R, Han L (2022) Image quality enhancement of CT hepatic portal venography using dual energy blending with computer determined parameters. J Xray Sci Technol, 30(2): 307-17. [DOI:10.3233/XST-210967]
12. Ren H, Zhen Y, Gong Z, Wang C, Chang Z, Zheng J (2021) Assessment of virtual monoenergetic images in run-off computed tomography angiography: A comparison study to conventional images from spectral detector computed tomography. Journal of Computer assisted Tomography, 45(2): 232-7. [DOI:10.1097/RCT.0000000000001126]
13. Li J, Zhao S, Ling Z, Li D, Jia G, Zhao C, Lin X, Dai Y, Jiang H, Wang S (2022) Dual-energy computed tomography imaging in early-stage hepatocellular carcinoma: A preliminary study. Contrast Media & Molecular Imaging, 2022: 2146343. [DOI:10.1155/2022/2146343]
14. Liang H, Zhou Y, Zheng Q, Yan G, Liao H, Du S, Zhang X, Lv F, Zhang Z, Li YM (2022) Dual-energy CT with virtual monoenergetic images and iodine maps improves tumor conspicuity in patients with pancreatic ductal adenocarcinoma. Insights into Imaging, 13(1): 153. [DOI:10.1186/s13244-022-01297-2]
15. De Cecco CN, Buffa V, Fedeli S, Luzietti M, Vallone A, Ruopoli R, et al. (2010) Dual energy CT (DECT) of the liver: conventional versus virtual unenhanced images. European Radiology, 20(12): 2870-5. [DOI:10.1007/s00330-010-1874-8]
16. Liu S, Sheng H, Shi H, Li W, Fan J, He J, Sun H (2018) Computed tomography portography of patients with cirrhosis with normal body mass index: Comparison between low-tube-voltage CT with low contrast agent dose and conventional CT. Medicine, 97(48): e13141. [DOI:10.1097/MD.0000000000013141]
17. Çoruh AG, Uzun Ç, Bozca E, Bozca B, Demir İ B, Atasever HG, et al. (2020) Is it possible to predict the side of hepatic metastases according to the primary location of colorectal cancer? Polish Journal of Radiology, 85: e595-e9. [DOI:10.5114/pjr.2020.99848]
18. Miñano C and Garcia-Tsao G (2010) Clinical pharmacology of portal hypertension. Gastroenterology clinics of North America, 39(3): 681-95. [DOI:10.1016/j.gtc.2010.08.015]
19. Kurimoto A, Yamanaka J, Hai S, Kondo Y, Sueoka H, Ohashi K, et al. (2016) Parenchyma-preserving hepatectomy based on portal ramification and perfusion of the right anterior section: preserving the ventral or dorsal area. Journal of Hepato-Biliary-Pancreatic Sciences, 23(3): 158-66. [DOI:10.1002/jhbp.317]
20. Wang L, Wu M, Zhu C, Li R, Bao S, Yang S, Dong J (2022) Ensemble learning based on efficient features combination can predict the outcome of recurrence-free survival in patients with hepatocellular carcinoma within three years after surgery. Frontiers in Oncology, 12: 1019009. [DOI:10.3389/fonc.2022.1019009]
21. Wei W, Pu YS, Wang XK, Jiang A, Zhou R, Li Y, Zhang QJ, Wei YJ, Chen B, Li ZF (2017) Wall shear stress in portal vein of cirrhotic patients with portal hypertension. World Journal of Gastroenterology, 23(18):3279-86. [DOI:10.3748/wjg.v23.i18.3279]
22. Han R, Sun K, Lu B, Zhao R, Li K, Yang X (2017) Diagnostic accuracy of coronary CT angiography combined with dual-energy myocardial perfusion imaging for detection of myocardial infarction. Experimental and Therapeutic Medicine, 14(1): 207-13. [DOI:10.3892/etm.2017.4485]
23. Lai LY, Jiang Y, Shu J (2023) The application of dual-layer spectral detector ct in abdominal vascular imaging. Current Medical Imaging, 19(14):1609-1615. [DOI:10.2174/1573405619666230216122650]
24. Kim C, Lee KY, Shin C, Kang EY, Oh YW, Ha M, Ko CS, Cha J (2018) Comparison of filtered back projection, hybrid iterative reconstruction, model-based iterative reconstruction, and virtual monoenergetic reconstruction images at both low- and standard-dose settings in measurement of emphysema volume and airway wall thickness: A CT phantom study. Korean journal of radiology, 19(4): 809-17. [DOI:10.3348/kjr.2018.19.4.809]
25. Cong W, Xi Y, De Man B, Wang G (2021) Monochromatic image reconstruction via machine learning. Machine Learning: Science and Technology, 2(2): 025032. [DOI:10.1088/2632-2153/abdbff]
26. Kim JE, Kim HO, Bae K, Cho JM, Choi HC, Choi DS (2017) Differentiation of small intrahepatic mass-forming cholangiocarcinoma from small liver abscess by dual source dual-energy CT quantitative parameters. Eur J Radiol, 92: 145-52. [DOI:10.1016/j.ejrad.2017.05.012]
27. Zeng Y, Geng D, Zhang J (2021) Noise-optimized virtual monoenergetic imaging technology of the third-generation dual-source computed tomography and its clinical applications. Quantitative Imaging in Medicine and Surgery, 11(11): 4627-43. [DOI:10.21037/qims-20-1196]
28. Zhou J, Zhou Y, Hu H, Shen MP, Ge YQ, Tao XW, Xu XQ, Su GY, Wu FY (2021) Feasibility study of using virtual non-contrast images derived from dual-energy CT to replace true non-contrast images in patients diagnosed with papillary thyroid carcinoma. Journal of X-ray Science and Technology, 29(4): 711-20. [DOI:10.3233/XST-210884]
29. Ohira S, Koike Y, Akino Y, Kanayama N, Wada K, Ueda Y, et al. (2021) Improvement of image quality for pancreatic cancer using deep learning-generated virtual monochromatic images: Comparison with single-energy computed tomography. Physica Medica,, 85: 8-14. [DOI:10.1016/j.ejmp.2021.03.035]
30. Martin SS, Kolaneci J, Czwikla R, Booz C, Gruenewald LD, Albrecht MH, et al. (2022) Dual-energy CT for the detection of portal vein thrombosis: improved diagnostic performance using virtual monoenergetic reconstructions. Diagnostics (Basel, Switzerland), 12(7): 025032. [DOI:10.3390/diagnostics12071682]
31. Pinho DF, Kulkarni NM, Krishnaraj A, Kalva SP, Sahani DV (2013) Initial experience with single-source dual-energy CT abdominal angiography and comparison with single-energy CT angiography: image quality, enhancement, diagnosis and radiation dose. European Radiology, 23(2): 351-9. [DOI:10.1007/s00330-012-2624-x]
32. Saba L, di Martino M, Siotto P, Anzidei M, Argiolas GM, Porcu M, Suri JS, Wintermark M (2018) Radiation dose and image quality of computed tomography of the supra-aortic arteries: A comparison between single-source and dual-source CT Scanners. Journal of Neuroradiology, 45(2): 136-41. [DOI:10.1016/j.neurad.2017.09.007]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Li X, Liang Z, Duan Y, Liu W, Han Z, Wang R. Image Quality and Radiation Dose of Portal Venous Imaging by Dual-Source Computed Tomography Single Energy Technology. Int J Radiat Res 2025; 23 (2) :305-309
URL: http://ijrr.com/article-1-6232-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 23, Issue 2 (5-2025) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.06 seconds with 50 queries by YEKTAWEB 4714