1. 1. Offi C, Romano RM, Cangiano A, et al. (2021) Evaluation of LMR, NLR and PLR as predictors of malignancy in indeterminate thyroid nodules. Acta Otorhinolaryngol Ital, 41(6): 530-6. [
DOI:10.14639/0392-100X-N1515]
2. Alexander EK and Cibas ES (2022) Diagnosis of thyroid nodules. Lancet Diabetes Endocrinol, 10(7): 533-9. [
DOI:10.1016/S2213-8587(22)00101-2]
3. Antonia TD, Maria LI, Ancuta-Augustina GG (2023) Preoperative evaluation of thyroid nodules - Diagnosis and management strategies. Pathol Res Pract, 246: 154516. [
DOI:10.1016/j.prp.2023.154516]
4. Durante C, Grani G, Lamartina L, et al. (2018) The diagnosis and management of thyroid nodules: A review. JAMA, 319(9): 914-24. [
DOI:10.1001/jama.2018.0898]
5. Tessler FN, Middleton WD, Grant EG, et al. (2017) ACR thyroid imaging, reporting and data system (TI-RADS): White paper of the ACR TI-RADS Committee. J Am Coll Radiol, 14(5): 587-95. [
DOI:10.1016/j.jacr.2017.01.046]
6. Chen H, Ye J, Song J, et al. (2021) Comparison of different ultrasound classification systems of thyroid nodules for identifying malignant potential: A cross-sectional study. Clinics (Sao Paulo), 76: e2126. [
DOI:10.6061/clinics/2021/e2126]
7. Xi X, Gao L, Wu Q, et al. (2020) Differentiation of thyroid nodules difficult to diagnose with contrast-enhanced ultrasonography and real-time elastography. Front Oncol, 10: 112. [
DOI:10.3389/fonc.2020.00112]
8. Radzina M, Ratniece M, Putrins DS, et al. (2021) Performance of Contrast-enhanced ultrasound in thyroid nodules: Review of current state and future perspectives. Cancers (Basel), 13(21): 5469. [
DOI:10.3390/cancers13215469]
9. Moraes PHM, Sigrist R, Takahashi MS, et al. (2019) Ultrasound elastography in the evaluation of thyroid nodules: evolution of a promising diagnostic tool for predicting the risk of malignancy. Radiol Bras, 52(4): 247-53. [
DOI:10.1590/0100-3984.2018.0084]
10. Han Z, Huang Y, Wang H, et al. (2022) Multimodal ultrasound imaging: A method to improve the accuracy of diagnosing thyroid TI-RADS 4 nodules. J Clin Ultrasound, 50(9): 1345-52. [
DOI:10.1002/jcu.23352]
11. Hoang JK, Middleton WD, Tessler FN (2021) Update on ACR TI-RADS: Successes, challenges, and future directions, from the AJR special series on radiology reporting and data systems. AJR Am J Roentgenol, 216(3): 570-8. [
DOI:10.2214/AJR.20.24608]
12. Tian Y, Lu Y, Zhao YZ, et al. (2018) Characteristics of high - resolution ultrasound in the assessment of microcalcification of papillary thyroid carcinoma. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 40(3): 378-84.
13. Sun C, Zhang Y, Chang Q, et al. (2020) Evaluation of a deep learning-based computer-aided diagnosis system for distinguishing benign from malignant thyroid nodules in ultrasound images. Med Phys, 47(9): 3952-60. [
DOI:10.1002/mp.14301]
14. Valenciaga A, Ivancic RJ, Khawaja R, et al. (2021) Efficacy of an Integrated hands-on thyroid ultrasound session for medical student education. Cureus, 13(1): e12421. [
DOI:10.7759/cureus.12421]
15. Xia R, Sun W, Yee J, et al. (2022) Do ACR TI-RADS scores demonstrate unique thyroid molecular profiles? Ultrasonography, 41(3): 480-92. [
DOI:10.14366/usg.21130]
16. Alyami J, Almutairi FF, Aldoassary S, et al. (2022) Interobserver variability in ultrasound assessment of thyroid nodules. Medicine (Baltimore), 101(41): e31106. [
DOI:10.1097/MD.0000000000031106]
17. Wan P, Chen F, Liu C, et al. (2021) Hierarchical temporal attention network for thyroid nodule recognition using dynamic CEUS imaging. IEEE Trans Med Imaging, 40(6): 1646-60. [
DOI:10.1109/TMI.2021.3063421]
18. Kogai T, Taki K, Brent GA (2006) Enhancement of sodium/iodide symporter expression in thyroid and breast cancer. Endocr Relat Cancer, 13(3): 797-826. [
DOI:10.1677/erc.1.01143]
19. Kurti M, Sabeti S, Robinson KA, et al. (2023) Quantitative biomarkers derived from a novel contrast-free ultrasound high-definition microvessel imaging for distinguishing thyroid nodules. Cancers (Basel), 15(6): 1888. [
DOI:10.3390/cancers15061888]
20. Skuletic V, Radosavljevic GD, Pantic J, et al. (2017) Angiogenic and lymphangiogenic profiles in histological variants of papillary thyroid carcinoma. Pol Arch Intern Med, 127(6): 429-37. [
DOI:10.20452/pamw.3999]
21. Zhao RN, Zhang B, Yang X, et al. (2015) Diagnostic value of contrast-enhanced ultrasound of thyroid nodules coexisting with Hashimoto's thyroiditis. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 37(1): 66-70.
22. Liu T, Ge X, Yu J, et al. (2015) Comparison of the application of B-mode and strain elastography ultrasound in the estimation of lymph node metastasis of papillary thyroid carcinoma based on a radiomics approach. Int J Comput Assist Radiol Surg, 13(10): 1617-27. [
DOI:10.1007/s11548-018-1796-5]
23. Moon HJ, Kim EK, Yoon JH, et al. (2012) Clinical implication of elastography as a prognostic factor of papillary thyroid microcarcinoma. Ann Surg Oncol, 19(7): 2279-87. [
DOI:10.1245/s10434-011-2212-3]
24. Rago T, Vitti P. (2009) Potential value of elastosonography in the diagnosis of malignancy in thyroid nodules. Q J Nucl Med Mol Imaging, 53(5): 455-64.