1. Chen YP, Chan ATC, Le QT, et al. (2019) Nasopharyngeal carcinoma. Lancet, 394(10192): 64-80. [
DOI:10.1016/S0140-6736(19)30956-0]
2. Sung H, Ferlay J, Siegel RL, et al. (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 71(3): 209-249. [
DOI:10.3322/caac.21660]
3. Cao W, Chen HD, Yu YW, et al. (2021) Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chin Med J (Engl), 134(7): 783-791. [
DOI:10.1097/CM9.0000000000001474]
4. Xu M, Yao Y, Chen H, et al. (2019) Genome sequencing analysis identifies Epstein-Barr virus subtypes associated with high risk of nasopharyngeal carcinoma. Nat Genet, 51(7): 1131-1136. [
DOI:10.1038/s41588-019-0436-5]
5. Lee AW, Ma BB, Ng WT, et al. (2015) Management of nasopharyngeal carcinoma: current practice and future perspective. J Clin Oncol, 33(29): 3356-3364. [
DOI:10.1200/JCO.2015.60.9347]
6. Colevas AD, Yom SS, Pfister DG, et al. (2018) NCCN Guidelines Insights: Head and Neck Cancers, Version 1.2018. J Natl Compr Canc Netw, 16(5): 479-490. [
DOI:10.6004/jnccn.2018.0026]
7. Perri F, Bosso D, Buonerba C, et al. (2011) Locally advanced nasopharyngeal carcinoma: Current and emerging treatment strategies. World J Clin Oncol, 2(12): 377-383. [
DOI:10.5306/wjco.v2.i12.377]
8. Perri F, Della Vittoria Scarpati G, Caponigro F, et al. (2019) Management of recurrent nasopharyngeal carcinoma: current perspectives. Onco Targets Ther, 12: 1583-1591. [
DOI:10.2147/OTT.S188148]
9. Jung HA, Park KU, Cho S, et al. (2022) A phase II study of nivolumab plus gemcitabine in patients with recurrent or metastatic nasopharyngeal carcinoma (KCSG HN17-11). Clin Cancer Res, 28(19): 4240-4247. [
DOI:10.1158/1078-0432.CCR-22-1238]
10. Hsu C, Lee SH, Ejadi S, et al. (2017) Safety and antitumor activity of pembrolizumab in patients with programmed death-ligand 1-positive nasopharyngeal carcinoma: Results of the KEYNOTE-028 study. J Clin Oncol, 35(36): 4050-4056. [
DOI:10.1200/JCO.2017.73.3675]
11. Ma BBY, Lim WT, Goh BC, et al. (2018) Antitumor activity of nivolumab in recurrent and metastatic nasopharyngeal carcinoma: an international, multicenter study of the mayo clinic phase 2 consortium (NCI-9742). J Clin Oncol, 36(14): 1412-1418.
12. Fang W, Yang Y, Ma Y, et al. (2018) Camrelizumab (SHR-1210) alone or in combination with gemcitabine plus cisplatin for nasopharyngeal carcinoma: results from two single-arm, phase 1 trials. Lancet Oncol, 19(10): 1338-1350. [
DOI:10.1016/S1470-2045(18)30495-9]
13. Yang Y, Qu S, Li J, et al. (2021) Camrelizumab versus placebo in combination with gemcitabine and cisplatin as first-line treatment for recurrent or metastatic nasopharyngeal carcinoma (CAPTAIN-1st): a multicenter, randomised, double-blind, phase 3 trial. Lancet Oncol, 22(8): 1162-1174. [
DOI:10.1016/S1470-2045(21)00302-8]
14. Adkins DR and Haddad RI. (2022) Clinical trial data of Anti-PD-1/PD-L1 therapy for recurrent or metastatic nasopharyngeal Carcinoma: A review. Cancer Treat Rev, 109: 102428. [
DOI:10.1016/j.ctrv.2022.102428]
15. Makowska A, Lelabi N, Nothbaum C, et al. (2021) Radiotherapy combined with PD-1 inhibition increases NK cell cytotoxicity towards nasopharyngeal carcinoma cells. Cells, 10(9): 2458. [
DOI:10.3390/cells10092458]
16. Tang LL, Chen YP, Chen CB, et al. (2021) The Chinese Society of Clinical Oncology (CSCO) clinical guidelines for the diagnosis and treatment of nasopharyngeal carcinoma. Cancer Commun (Lond), 41(11): 1195-1227. [
DOI:10.1002/cac2.12218]
17. Ettinger DS, Wood DE, Aisner DL, et al. (2022) Non-small cell lung cancer, version 3.2022, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw, 20(5): 497-530.
18. Chiu HY, Chao HS, Chen YM. (2022) Application of artificial intelligence in lung cancer. Cancers (Basel), 14(6): 1370. [
DOI:10.3390/cancers14061370]
19. Yin X, Liao H, Yun H, et al. (2022) Artificial intelligence-based prediction of clinical outcome in immunotherapy and targeted therapy of lung cancer. Semin Cancer Biol, 86(Pt 2): 146-159. [
DOI:10.1016/j.semcancer.2022.08.002]
20. Sun R, Limkin EJ, Vakalopoulou M, et al. (2018) A radiomics approach to assess tumor-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol, 19(9): 1180-1191. [
DOI:10.1016/S1470-2045(18)30413-3]
21. Zheng X, Yao Z, Huang Y, et al. (2020) Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer. Nat Commun, 11(1): 1236. [
DOI:10.1038/s41467-020-15027-z]
22. Zhao X, Zhao Y, Zhang J, et al. (2023) Predicting PD-L1 expression status in patients with non-small cell lung cancer using [18F]FDG PET/CT radiomics. EJNMMI Res, 13(1): 4. [
DOI:10.1186/s13550-023-00956-9]
23. Lim CH, Koh YW, Hyun SH, et al. (2022) A Machine Learning Approach Using PET/CT-based radiomics for prediction of PD-L1 expression in non-small cell lung cancer. Anticancer Res, 42(12): 5875-5884. [
DOI:10.21873/anticanres.16096]
24. Shao J, Ma J, Zhang S, et al. (2022) Radiogenomic system for non-invasive identification of multiple actionable mutations and PD-L1 expression in non-small cell lung cancer based on CT images. Cancers (Basel), 14(19): 4823. [
DOI:10.3390/cancers14194823]
25. Monaco L, De Bernardi E, Bono F, et al. (2022) The "digital biopsy" in non-small cell lung cancer (NSCLC): a pilot study to predict the PD-L1 status from radiomics features of [18F]FDG PET/CT. Eur J Nucl Med Mol Imaging, 49(10): 3401-3411. [
DOI:10.1007/s00259-022-05783-z]
26. Wang C, Ma J, Shao J, et al. (2022) Non-invasive measurement using deep learning algorithm based on multi-source features fusion to predict PD-L1 expression and survival in NSCLC. Front Immunol, 13: 828560. [
DOI:10.3389/fimmu.2022.828560]
27. Wang C, Ma J, Shao J, et al. (2022) Predicting EGFR and PD-L1 status in NSCLC Patients using multitask AI system based on CT images. Front Immunol, 13: 813072. [
DOI:10.3389/fimmu.2022.813072]
28. Lo Gullo R, Wen H, Reiner JS, et al. (2021) Assessing PD-L1 expression status using radiomic features from contrast-enhanced breast MRI in breast cancer patients: Initial results. Cancers (Basel), 13(24): 6273. [
DOI:10.3390/cancers13246273]
29. Shi W, Yang Z, Zhu M, et al. (2022) Correlation between PD-L1 expression and radiomic features in early-stage lung adenocarcinomas manifesting as ground-glass nodules. Front Oncol, 12: 986579. [
DOI:10.3389/fonc.2022.986579]
30. Tian Y, Komolafe TE, Zheng J, et al. (2021) Assessing PD-L1 Expression Level via Preoperative MRI in HCC based on integrating deep learning and radiomics features. Diagnostics (Basel), 11(10): 1875. [
DOI:10.3390/diagnostics11101875]
31. Gu X, Yu X, Shi G, et al. (2023) Can PD-L1 expression be predicted by contrast-enhanced CT in patients with gastric adenocarcinoma? A preliminary retrospective study. Abdom Radiol (NY), 48(1): 220-228. [
DOI:10.1007/s00261-022-03709-9]
32. Xie W, Jiang Z, Zhou X, et al. (2023) Quantitative radiological features and deep learning for the non-invasive evaluation of programmed death ligand 1 expression levels in gastric cancer patients: A digital biopsy study. Acad Radiol, 30(7): 1317-1328. [
DOI:10.1016/j.acra.2022.10.012]
33. Varghese B, Cen S, Zahoor H, et al. (2022) Feasibility of using CT radiomic signatures for predicting CD8-T cell infiltration and PD-L1 expression in renal cell carcinoma. Eur J Radiol Open, 9: 100440. [
DOI:10.1016/j.ejro.2022.100440]
34. Nioche C, Orlhac F, Boughdad S, et al. (2018) LIFEx: A freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer Res, 78(16): 4786-4789. (https:// doi.org/10.1158/0008-5472.CAN-18-0125) [
DOI:10.1158/0008-5472.CAN-18-0125]
35. Zheng YM, Yuan MG, Zhou RQ, et al. (2022) A computed tomography-based radiomics signature for predicting expression of programmed death ligand 1 in head and neck squamous cell carcinoma. Eur Radiol, 32(8): 5362-5370. [
DOI:10.1007/s00330-022-08651-4]
36. Zheng YM, Zhan JF, Yuan MG, et al. (2022) A CT-based radiomics signature for preoperative discrimination between high and low expression of programmed death ligand 1 in head and neck squamous cell carcinoma. Eur J Radiol, 146: 110093. [
DOI:10.1016/j.ejrad.2021.110093]
37. Aerts HJ, Velazquez ER, Leijenaar RT, et al. (2014) Decoding tumor phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun, 5: 4006. [
DOI:10.1038/ncomms5006]
38. Mano Y, Aishima S, Kubo Y, et al. (2014) Correlation between biological marker expression and fluorine-18 fluorodeoxyglucose uptake in hepatocellular carcinoma. Am J Clin Pathol, 142(3): 391-397. [
DOI:10.1309/AJCPG8AFJ5NRKLLM]
39. Fang W, Zhang J, Hong S, et al. (2014) EBV-driven LMP1 and IFN-γ up-regulate PD-L1 in nasopharyngeal carcinoma: Implications for oncotargeted therapy. Oncotarget, 5(23): 12189-12202. [
DOI:10.18632/oncotarget.2608]
40. Li J, Ge S, Sang S, et al. (2021) Evaluation of PD-L1 expression level in patients with non-small cell lung cancer by 18F-FDG PET/CT radiomics and clinicopathological characteristics. Front Oncol, 11: 789014. [
DOI:10.3389/fonc.2021.789014]