|
|
Yaprak G, Doğan Ö, Atasoy Ö, Çini N, Özyurt H, Gedik D et al . The relationship between lung doses, dosimetric factors, survival, and radiation pneumonitis in lung cancer treated with volumetric-modulated arch therapy and helical tomotherapy. Int J Radiat Res 2025; 23 (3) :535-542 URL: http://ijrr.com/article-1-6527-en.html
Istanbul Sancaktepe Şehit Prof. Dr. İlhan Varank Training and Research Hospital, Radiation Oncology Department, Istanbul, Turkey , gokhan.yaprak@sbu.edu.tr
Abstract: (529 Views)
Background: We aimed to evaluate dosimetric, clinical parameters, and survival factors contributing to the risk of radiation pneumonia in lung cancer patients treated with volumetric-modulated arch therapy (VMAT) and helical tomotherapy (HT). Materials and Methods: Retrospective analysis of 79 lung cancer patients treated between January 2018-2020, with 54 eligible patients. Radiotherapy using HT and VMAT at a total dose of 60Gy. Lung volumes receiving >5, 10, 20 Gy, mean lung dose, and organ doses were recorded. The associations among clinical factors, dose-volume parameters, grade >3 RP, and survival outcomes (OS, LRFS, DMFS) were analyzed. Results: Median follow-up: 18.9 months (range 10.1-34.4). Median OS: 17 months, with 1- and 2-year OS rates of 71.8% and 45.2%, respectively. Univariate analysis showed significant associations with OS for mean lung dose, lung V5Gy, V10 Gy, V20Gy, mean esophagus dose, esophagus V20Gy, V60Gy, heart V40Gy, and grade >3 RP (all p<0.05). For LRFS, significant factors included PTV% 95 coverage >59Gy, PTV volume <55cm3, esophagus V20Gy, and grade>3 RP (all p<0.05). In multivariate analysis, lung V5 Gy, V10 Gy, mean esophagus dose, esophagus V20 Gy, V60 Gy, heart V40 Gy, and grade >3 RP remained significant for OS, while PTV volume was significant for LRFS. Lung volumes of V5, V10, and V20 strongly associated with grade>3 RP. Conclusion: In this study we found that low-dose lung volumes and doses to organs at risk (esophagus, heart) are not only significant for radiation pneumonitis (RP) but also play a crucial role in overall survival in arch treatments.
References
1. Wang D, Shi J, Liang S, et al. (2013) Dose-volume histogram parameters for predicting radiation pneumonitis using receiver operating characteristic curve. Clin Transl Oncol, 15(5): 364-369. [ DOI:10.1007/s12094-012-0931-y] 2. Afrin KT and Ahmad S (2022) Is IMRT or VMAT superior or inferior to 3D conformal therapy in the treatment of lung cancer? A brief literature review. Journal of Radiotherapy in Practice, 21(3): 416-420. [ DOI:10.1017/S146039692100008X] 3. Jin X, Lin B, Chen D, et al. (2019) Safety and outcomes of volumetric modulated arc therapy in the treatment of patients with inoperable lung cancer. J Cancer, 10(13): 2868-2873. [ DOI:10.7150/jca.31260] 4. Tao Z. C, Qiu J, Zhang Y, et al. (2021) Chemoradiotherapy alone or in combination with Endostar for patients with advanced non-small cell lung cancer: A systematic review and meta-analysis. International Journal of Radiation Research, 19(1): 1-12. 5. Piotrowski T, Matecka-Nowak M, Milecki P (2005) Prediction of radiation pneumonitis: dose-volume histogram analysis in 62 patients with non-small cell lung cancer after three-dimensional conformal radiotherapy. Neoplasma, 52(1): 56-62. 6. Mackie TR, Holmes T, Swerdloff S, et al. (1993) Tomotherapy: a new concept for the delivery of dynamic conformal radiotherapy. Med Phys, 20(6): 1709-1719. [ DOI:10.1118/1.596958] 7. Chun SG, Hu C, Komaki RU, et al. (2024) Long-term prospective outcomes of ıntensity modulated radiotherapy for locally advanced lung cancer: A secondary analysis of a randomized clinical trial. JAMA Oncol, 10(8):1111-1115. [ DOI:10.1001/jamaoncol.2024.1841] 8. Wu K, Xu X, Li X, et al. (2018) Radiation pneumonitis in lung cancer treated with volumetric modulated arc therapy. J Thorac Dis, 10(12): 6531-6539. [ DOI:10.21037/jtd.2018.11.132] 9. Meng LL, Feng LC, Wang YL, Dai XK, Xie CB (2011) Dosimetric comparison between helical tomotherapy and intensity-modulated radiation therapy plans for non-small cell lung cancer. Chin Med J (Engl), 124(11): 1667-1671. 10. Noh JM, Kim JM, Ahn YC, et al. (2016) Effect of radiation therapy techniques on outcome in n3-positive ıııb non-small cell lung cancer treated with concurrent chemoradiotherapy. Cancer Res Treat, 48(1): 106-114. [ DOI:10.4143/crt.2014.131] 11. Abo-Madyan Y, Aziz MH, Aly MM, et al. (2014) Second cancer risk after 3D-CRT, IMRT and VMAT for breast cancer. Radiother Oncol, 110(3): 471-476. [ DOI:10.1016/j.radonc.2013.12.002] 12. Badellino S, Muzio JD, Schivazappa G, et al. (2017) No differences in radiological changes after 3D conformal vs VMAT-based stereotactic radiotherapy for early stage non-small cell lung cancer. Br J Radiol, 90(1078): 20170143. [ DOI:10.1259/bjr.20170143] 13. Jiang X, Li T, Liu Y, et al. (2011) Planning analysis for locally advanced lung cancer: dosimetric and efficiency comparisons between intensity-modulated radiotherapy (IMRT), single-arc/partial-arc volumetric modulated arc therapy (SA/PA-VMAT). Radiat Oncol. 6: 140. [ DOI:10.1186/1748-717X-6-140] 14. Okutan M, Franko A, Köksal C, et al.(2020). The evaluation of lung doses for radiation pneumonia risk in stereotactic body radiotherapy: A comparison of intensity modulated radiotherapy, intensity modulated arc therapy, cyberknife and helical tomotherapy. International Journal of Radiation Research, 18(4): 633-640. [ DOI:10.52547/ijrr.18.4.633] 15. Masuo M, Shinohara E, Kitano M, et al. (2024) A comparison of the incidence of ≥ grade 2 radiation pneumonitis between intensity-modulated radiotherapy and three-dimensional conformal radiotherapy in patients with unresectable non-small cell lung cancer treated with durvalumab after concurrent chemoradiotherapy. Jpn J Clin Oncol, 54(3): 312-318. [ DOI:10.1093/jjco/hyad158] 16. Saito S, Abe T, Kobayashi N, et al. (2020) Incidence and dose-volume relationship of radiation pneumonitis after concurrent chemoradiotherapy followed by durvalumab for locally advanced non-small cell lung cancer. Clin Transl Radiat Oncol, 23: 85-88. [ DOI:10.1016/j.ctro.2020.05.006] 17. Claude L, Pérol D, Ginestet C, et al. (2004) A prospective study on radiation pneumonitis following conformal radiation therapy in non-small-cell lung cancer: clinical and dosimetric factors analysis. Radiother Oncol, 71(2): 175-181. [ DOI:10.1016/j.radonc.2004.02.005] 18. Wang JB, Jiang W, Ji Z, et al. (2016). Zhonghua zhong liu za zhi. Chinese journal of oncology, 38(8): 607-614. 19. Wang S, Liao Z, Wei X, et al. (2006) Analysis of clinical and dosimetric factors associated with treatment-related pneumonitis (TRP) in patients with non-small-cell lung cancer (NSCLC) treated with concurrent chemotherapy and three-dimensional conformal radiotherapy (3D-CRT). Int J Radiat Oncol Biol Phys, 66(5): 1399-1407. [ DOI:10.1016/j.ijrobp.2006.07.1337] 20. Yorke ED, Jackson A, Rosenzweig KE, Braban L, Leibel SA, Ling CC (2005) Correlation of dosimetric factors and radiation pneumonitis for non-small-cell lung cancer patients in a recently completed dose escalation study. Int J Radiat Oncol Biol Phys, 63(3): 672-682. [ DOI:10.1016/j.ijrobp.2005.03.026] 21. Willner J, Jost A, Baier K, Flentje M (2003) A little to a lot or a lot to a little? An analysis of pneumonitis risk from dose-volume histogram parameters of the lung in patients with lung cancer treated with 3-D conformal radiotherapy. Strahlenther Onkol, 179(8): 548-556. [ DOI:10.1007/s00066-003-1078-0] 22. Mehta V (2005) Radiation pneumonitis and pulmonary fibrosis in non-small-cell lung cancer: pulmonary function, prediction, and prevention. Int J Radiat Oncol Biol Phys, 63(1): 5-24. [ DOI:10.1016/j.ijrobp.2005.03.047] 23. Chun SG, Hu C, Choy H, et al. (2017) Impact of Intensity-modulated radiation therapy technique for locally advanced non-small-cell lung cancer: A secondary analysis of the NRG oncology RTOG 0617 randomized clinical trial. J Clin Oncol, 35(1): 56-62. [ DOI:10.1200/JCO.2016.69.1378] 24. Tucker SL, Liu HH, Liao Z, et al. (2008) Analysis of radiation pneumonitis risk using a generalized Lyman model. Int J Radiat Oncol Biol Phys, 72(2): 568-574. [ DOI:10.1016/j.ijrobp.2008.04.053] 25. Tucker SL, Xu T, Paganetti H, et al. (2019) Validation of effective dose as a better predictor of radiation pneumonitis risk than mean lung dose: secondary analysis of a randomized trial. Int J Radiat Oncol Biol Phys, 103(2): 403-410. [ DOI:10.1016/j.ijrobp.2018.09.029] 26. Bradley JD, Paulus R, Komaki R, et al. (2015) Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol, 16(2): 187-199. [ DOI:10.1016/S1470-2045(14)71207-0] 27. Speirs CK, DeWees TA, Rehman S, et al. (2017) Heart Dose ıs an ındependent dosimetric predictor of overall survival in locally advanced non-small cell lung cancer. J Thorac Oncol, 12(2): 293-301. [ DOI:10.1016/j.jtho.2016.09.134] 28. Reymen B, Van Loon J, van Baardwijk A, et al. (2013) Total gross tumor volume is an independent prognostic factor in patients treated with selective nodal irradiation for stage I to III small cell lung cancer. Int J Radiat Oncol Biol Phys, 85(5): 1319-1324. [ DOI:10.1016/j.ijrobp.2012.10.003]
|