[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

Volume 23, Issue 3 (7-2025)                   Int J Radiat Res 2025, 23(3): 601-606 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Weng X, Wang X, Yang M, Jin W, Zhu Y, Qiao L. Clinical value of bedside ultrasound in different degrees of neonatal chest imaging. Int J Radiat Res 2025; 23 (3) :601-606
URL: http://ijrr.com/article-1-6576-en.html
Department of Pediatrics, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, PR China , qiaolixing@aliyun.com
Abstract:   (670 Views)
Background: This research aimed to investigate imaging features of bedside ultrasound in different degrees of neonatal respiratory distress syndrome (NRDS). Materials and Methods: Eighty premature children admitted to neonatal intensive care unit (NICU) of Zhongda Hospital Affiliated to Southeast University within 6-12 hours after birth and diagnosed with NRDS by clinical and chest X-ray between January 2019 and December 2019 were selected. The children were divided into pulmonary surfactant (PS) treatment group (22 cases) and non-PS treatment group (58 cases). The lung ultrasound (LUS) score and total score of 12 regions was calculated, and score was compared with different degrees of NRDS in clinical neonates to compare ultrasound characteristics of different degrees of NRDS. Results: There was a positive correlation between 12 zone ultrasound score of double lung and grade of chest X-ray impact (r=0.872, P<0.001). The ultrasound scores were positively correlated with degree of respiratory distress (r=0.905, P<0.001). In PS administration group, the degree of respiratory distress improved from severe to mild (10 cases) and non-mild (12 cases) 2 hours after administration. Conclusion: Ultrasonography can be used as a non-invasive imaging method to diagnose condition of children with NRDS and dynamically predict prognosis of NRDS, which may offer a preliminary basis for ultrasonic-assisted clinical diagnosis and therapy.
Full-Text [PDF 692 kb]   (203 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology

References
1. 1. Huff K, Rose RS, Engle WA (2019) Late preterm infants: morbidities, mortality, and management recommendations. Pediatr Clin North Am, 66(2): 387-402. [DOI:10.1016/j.pcl.2018.12.008]
2. Han T, Wang D, Xie W, et al. (2022) Obstetricians' attitudes toward the treatment of extremely preterm infants in China. JAMA Netw Open, 5(9): e2233511. [DOI:10.1001/jamanetworkopen.2022.33511]
3. Hogden L, Munger K, Duffek S (2021) Neonatal respiratory distress. SD Med, 74(1): 28-35.
4. Bohlin K, Gudmundsdottir T, Katz-Salamon M, et al. (2007) Implementation of surfactant treatment during continuous positive airway pressure. J Perinatol, 27(7): 422-7. [DOI:10.1038/sj.jp.7211754]
5. Ramanathan R (2009) Choosing a right surfactant for respiratory distress syndrome treatment. Neonatology, 95(1): 1-5. [DOI:10.1159/000151749]
6. Dunn MS, Shennan AT, Zayack D, et al. (1991) Bovine surfactant replacement therapy in neonates of less than 30 weeks' gestation: a randomized controlled trial of prophylaxis versus treatment. Pediatrics, 87(3): 377-86. [DOI:10.1542/peds.87.3.377]
7. Rubarth LB and Quinn J (2015) Respiratory development and respiratory distress syndrome. Neonatal Netw, 34(4): 231-8. [DOI:10.1891/0730-0832.34.4.231]
8. Bae CW, Kim CY, Chung SH, et al. (2019) History of pulmonary surfactant replacement therapy for neonatal respiratory distress syndrome in Korea. J Korean Med Sci, 34(25): e175. [DOI:10.3346/jkms.2019.34.e175]
9. Ma CC and Ma S (2012) The role of surfactant in respiratory distress syndrome. Open Respir Med J, 6: 44-53. [DOI:10.2174/1874306401206010044]
10. Polin RA and Carlo WA (2014) Surfactant replacement therapy for preterm and term neonates with respiratory distress. Pediatrics, 133(1): 156-63. [DOI:10.1542/peds.2013-3443]
11. Jasani B, Kabra N, Nanavati R (2016) Surfactant replacement therapy beyond respiratory distress syndrome in neonates. Indian Pediatr, 53(3): 229-34. [DOI:10.1007/s13312-016-0826-z]
12. Sweet DG, Carnielli V, Greisen G, et al. (2017) European consensus guidelines on the management of respiratory distress syndrome - 2016 update. Neonatology, 111(2): 107-125. [DOI:10.1159/000448985]
13. Göpel W, Kribs A, Ziegler A, et al. (2011) Avoidance of mechanical ventilation by surfactant treatment of spontaneously breathing preterm infants (AMV): an open-label, randomised, controlled trial. Lancet, 378(9803): 1627-34. [DOI:10.1016/S0140-6736(11)60986-0]
14. Aldana-Aguirre JC, Pinto M, Featherstone RM, et al. (2017) Less invasive surfactant administration versus intubation for surfactant delivery in preterm infants with respiratory distress syndrome: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed, 102(1): F17-f23. [DOI:10.1136/archdischild-2015-310299]
15. Rigo V, Lefebvre C, Broux I (2016) Surfactant instillation in spontaneously breathing preterm infants: a systematic review and meta-analysis. Eur J Pediatr, 175(12): 1933-1942. [DOI:10.1007/s00431-016-2789-4]
16. Kribs A, Roll C, Göpel W, et al. (2015) Nonintubated surfactant application vs conventional therapy in extremely preterm infants: A randomized clinical trial. JAMA Pediatr, 169(8): 723-30. [DOI:10.1001/jamapediatrics.2015.0504]
17. Liu J (2023) Ultrasound diagnosis and grading criteria of neonatal respiratory distress syndrome. J Matern Fetal Neonatal Med, 36(1): 2206943. [DOI:10.1080/14767058.2023.2206943]
18. Lovrenski J (2012) Lung ultrasonography of pulmonary complications in preterm infants with respiratory distress syndrome. Ups J Med Sci, 117(1): 10-7. [DOI:10.3109/03009734.2011.643510]
19. Szymański P, Kruczek P, Hożejowski R, et al. (2021) Modified lung ultrasound score predicts ventilation requirements in neonatal respiratory distress syndrome. BMC Pediatr, 21(1): 17. [DOI:10.1186/s12887-020-02485-z]
20. Khemani RG, Smith LS, Zimmerman JJ, et al. (2015) Pediatric acute respiratory distress syndrome: definition, incidence, and epidemiology: proceedings from the Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med, 16(5 Suppl 1): S23-40. [DOI:10.1097/PCC.0000000000000432]
21. Singhal N, Lockyer J, Fidler H, et al. (2012) Acute care of at-risk newborns (ACoRN): quantitative and qualitative educational evaluation of the program in a region of China. BMC Med Educ, 12: 44. [DOI:10.1186/1472-6920-12-44]
22. Brat R, Yousef N, Klifa R, et al. (2015) Lung ultrasonography score to evaluate oxygenation and surfactant need in neonates treated with continuous positive airway pressure. JAMA Pediatr, 169(8): e151797. [DOI:10.1001/jamapediatrics.2015.1797]
23. Rouby JJ, Arbelot C, Gao Y, et al. (2018) Training for lung ultrasound score measurement in critically ill patients. Am J Respir Crit Care Med, 198(3): 398-401. [DOI:10.1164/rccm.201802-0227LE]
24. Liu J, Lovrenski J, Ye Hlaing A, et al. (2021) Neonatal lung diseases: lung ultrasound or chest x-ray. J Matern Fetal Neonatal Med, 34(7): 1177-1182. [DOI:10.1080/14767058.2019.1623198]
25. Miller LE, Stoller JZ, Fraga MV (2020) Point-of-care ultrasound in the neonatal ICU. Curr Opin Pediatr, 32(2): 216-227. [DOI:10.1097/MOP.0000000000000863]
26. Miller DL, Dou C, Dong Z (2022) Lung ultrasound induction of pulmonary capillary hemorrhage in neonatal swine. Ultrasound Med Biol, 48(11): 2276-2291. [DOI:10.1016/j.ultrasmedbio.2022.06.020]
27. Liu J, Copetti R, Sorantin E, et al. (2019) Protocol and guidelines for point-of-care lung ultrasound in diagnosing neonatal pulmonary diseases based on international expert consensus. J Vis Exp, 145: 58990. [DOI:10.3791/58990]
28. Jones BP, Tay ET, Elikashvili I, et al. (2016) Feasibility and safety of substituting lung ultrasonography for chest radiography when diagnosing pneumonia in children: a randomized controlled trial. Chest, 150(1): 131-8. [DOI:10.1016/j.chest.2016.02.643]
29. Chen SW, Fu W, Liu J, et al. (2017) Routine application of lung ultrasonography in the neonatal intensive care unit. Medicine (Baltimore), 96(2): e5826. [DOI:10.1097/MD.0000000000005826]
30. Liu J, Cao HY, Wang XL, et al. (2016) The significance and the necessity of routinely performing lung ultrasound in the neonatal intensive care units. J Matern Fetal Neonatal Med, 29(24): 4025-30. [DOI:10.3109/14767058.2016.1152577]
31. Karagodin I, Carvalho Singulane C, Woodward GM, et al. (2021) Echocardiographic correlates of in-hospital death in patients with acute COVID-19 infection: The world alliance societies of echocardiography (WASE-COVID) study. J Am Soc Echocardiogr, 34(8): 819-830. [DOI:10.1016/j.echo.2021.05.010]
32. Corradi F, Vetrugno L, Orso D, et al. (2021) Diaphragmatic thickening fraction as a potential predictor of response to continuous positive airway pressure ventilation in Covid-19 pneumonia: A single-center pilot study. Respir Physiol Neurobiol, 284: 103585. [DOI:10.1016/j.resp.2020.103585]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 50 queries by YEKTAWEB 4722