|
Zhang L, Li H, Guo C, Cheng T. Utility of ultrasound superb microvascular imaging parameters for prediction of the initial effectiveness of monoclonal antibody therapy for cervical cancer. Int J Radiat Res 2025; 23 (3) :619-625 URL: http://ijrr.com/article-1-6581-en.html
Changzhou Cancer Hospital, Changzhou City, Jiangsu province, China , chengtao1216@hotmail.com
Abstract: (408 Views)
Background: Globally, PD-1/PD-L1 inhibitors combined with bevacizumab have shown promising results in treating renal and lung cancers, but their efficacy in cervical cancer (CC) remains unclear. Superb microvascular imaging (SMI) is a novel technique for observing microcirculation in tumors. This study investigated the effectiveness and survival benefits of SMI in assessing tislelizumab combined with bevacizumab for treating CC. Materials and Methods: 86 patients with CC (2022–2023) were randomly divided into two groups: group A (bevacizumab, n=43) and group B (tislelizumab + bevacizumab, n=43). After 4 cycles of treatment, tumor volume and Adler blood-flow grades were assessed using color Doppler flow imaging (CDFI) and SMI. Receiver operating characteristic (ROC) curves were used to evaluate the diagnostic value of both methods in assessing treatment effects. Results: Both CDFI and SMI demonstrated significant differences in treatment effectiveness between groups (p<0.05). CDFI showed improved Adler blood-flow grades after treatment in both groups (p<0.05), but they were not significantly different between the groups (P>0.05). SMI also revealed significant improvements (p<0.01) and greater differences between groups after treatment (p<0.05). The area under the curve (AUC) for SMI in evaluating therapeutic efficacy was 0.833 (sensitivity 86.05%, specificity 69.77%), while CDFI showed an AUC of 0.816 (sensitivity 79.07%, specificity 72.09%). Conclusions: Tislelizumab combined with bevacizumab significantly improves CC treatment. SMI outperforms CDFI in evaluating tumor microvessels and provides valuable insight for the planning of early CC treatment.
References
1. Moore DH (2006) Cervical cancer. Obstetrics and gynecology, 107(5): 1152-61. [ DOI:10.1097/01.AOG.0000215986.48590.79] 2. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. (2024) Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians, 74(3): 229-63. [ DOI:10.3322/caac.21834] 3. Gopu P, Antony F, Cyriac S, Karakasis K, Oza AM (2021) Updates on systemic therapy for cervical cancer. The Indian Journal of Medical Research, 154(2): 293-302. [ DOI:10.4103/ijmr.IJMR_4454_20] 4. Wen C, Huang L, Jiang H (2021) Diagnosis of Interventional trans vaginal maternal diseases based on color doppler ultrasound. Jour nal of Healthcare Engineering, 2021: 5517785. [ DOI:10.1155/2021/5517785] 5. Yang Z, Cai J, Wang Y, Shu L, Liu W, Wang Z (2024) Comparison of doppler imaging and microvascular imaging in cervical lymph node blood flow analysis. Current Medical Imaging, 20(1): e15734056306197. [ DOI:10.2174/0115734056306197240404035009] 6. Zhu Y, Tang Y, Jiang Z, Zhang J, Jia S, Li Y, et al. (2023) Potential di agnostic value of quantitative superb microvascular imaging in premalignant and malignant cervical lesions. Frontiers in Oncology, 13: 1250842. [ DOI:10.3389/fonc.2023.1250842] 7. Zhu Y, Tang Y, Zhang G, Zhang J, Li Y, Jiang Z (2022) Quantitative analysis of superb microvascular imaging for monitoring tumor re sponse to chemoradiotherapy in locally advanced cervical cancer. Frontiers in Oncology, 12: 1074173. [ DOI:10.3389/fonc.2022.1074173] 8. Zhong J, Huang L, Su M, Wu M, Lin X, Shui X, et al. (2023) Ultra sound microvessel visualization in cervical cancer: association be tween novel ultrasound techniques and histologic microvessel den sities. Ultrasound in Medicine & Biology, 49(12): 2537-47. [ DOI:10.1016/j.ultrasmedbio.2023.08.017] 9. Sato W, Suto Y, Yamanaka T, Watanabe H (2021) An advanced ul trasound application used to assess peripheral vascular diseases: superb microvascular imaging. Journal of Echocardiography, 19(3): 150-7. [ DOI:10.1007/s12574-021-00527-8] 10. Salomon-Perzyńska M, Perzyński A, Rembielak-Stawecka B, Michal ski B, Skrzypulec-Plinta V (2014) VEGF--targeted therapy for the treatment of cervical cancer --literature review. Ginekologia Pol ska, 85(6): 461-5. [ DOI:10.17772/gp/1754] 11. Mezache L, Paniccia B, Nyinawabera A, Nuovo GJ (2015) Enhanced expression of PD L1 in cervical intraepithelial neoplasia and cervi cal cancers. Modern Pathology, 28(12): 1594-602. [ DOI:10.1038/modpathol.2015.108] 12. Fu K, Zhang L, Liu R, Shi Q, Li X, Wang M (2020) MiR-125 inhibited cervical cancer progression by regulating VEGF and PI3K/AKT sig naling pathway. World Journal of Surgical Oncology, 18(1): 115. [ DOI:10.1186/s12957-020-01881-0] 13. Shen S, Hong Y, Huang J, Qu X, Sooranna SR, Lu S, et al. (2024) Tar geting PD-1/PD-L1 in tumor immunotherapy: mechanisms and in teractions with host growth regulatory pathways. Cytokine & Growth Factor Reviews, 79: 16-28. [ DOI:10.1016/j.cytogfr.2024.08.001] 14. Zhang L, Geng Z, Hao B, Geng Q (2022) Tislelizumab: A modified anti-tumor programmed death receptor 1 antibody. Cancer Con trol, 29: 10732748221111296. [ DOI:10.1177/10732748221111296] 15. Tewari KS, Sill MW, Long HJ, 3rd, Penson RT, Huang H, Ramondetta LM, et al. (2014) Improved survival with bevacizumab in advanced cervical cancer. The New England Journal of Medicine, 370(8): 734-43. [ DOI:10.1056/NEJMoa1309748] 16. Chuai Y, Rizzuto I, Zhang X, Li Y, Dai G, Otter SJ, et al. (2021) Vascu lar endothelial growth factor (VEGF) targeting therapy for persis tent, recurrent, or metastatic cervical cancer. The Cochrane Data base of Systematic Reviews, 3(3): Cd013348. [ DOI:10.1002/14651858.CD013348.pub2] 17. Chen Z, Pang N, Du R, Zhu Y, Fan L, Cai D, et al. (2016) Elevated ex pression of programmed death-1 and programmed death ligand-1 negatively regulates immune response against cervical cancer cells. Mediators of Inflammation, 2016: 6891482. [ DOI:10.1155/2016/6891482] 18. Oaknin A, Gladieff L, Martínez-García J, Villacampa G, Takekuma M, De Giorgi U, et al. (2024) Atezolizumab plus bevacizumab and chemotherapy for metastatic, persistent, or recurrent cervical can cer (BEATcc): a randomised, open-label, phase 3 trial. Lancet (London, England), 403(10421): 31-43. [ DOI:10.1016/S0140-6736(23)02405-4] 19. Friedman CF, Snyder Charen A, Zhou Q, Carducci MA, Buckley De Meritens A, Corr BR, et al. (2020) Phase II study of atezolizumab in combination with bevacizumab in patients with advanced cervical cancer. Journal for Immunotherapy of Cancer, 8(2): e001126. [ DOI:10.1136/jitc-2020-001126] 20. Lei J, Zhang J, You C, Liu M, Li N (2024) First-line treatment with atezolizumab plus bevacizumab and chemotherapy for US Patients with metastatic, persistent, or recurrent cervical cancer: a cost-effectiveness analysis. Value in health, 27(11): 1528-1534. [ DOI:10.1016/j.jval.2024.07.013] 21. de Juan A, Redondo A, Rubio MJ, García Y, Cueva J, Gaba L, et al. (2020) SEOM clinical guidelines for cervical cancer (2019). Clinical & Translational Oncology, 22(2): 270-8. [ DOI:10.1007/s12094-019-02271-z] 22. Kido A and Nakamoto Y (2021) Implications of the new FIGO stag ing and the role of imaging in cervical cancer. British Journal of Ra diology, 94(1125): 20201342. [ DOI:10.1259/bjr.20201342] 23. Gouda MA, Janku F, Wahida A, Buschhorn L, Schneeweiss A, Abdel Karim N, et al. (2024) Liquid biopsy response evaluation criteria in solid tumors (LB-RECIST). Annals of Oncology, 35(3): 267-75. [ DOI:10.1016/j.annonc.2023.12.007] 24. Che D, Yang Z, Wei H, Wang X, Gao J (2020) The Adler grade by Doppler ultrasound is associated with clinical pathology of cervical cancer: Implication for clinical management. PloS one, 15(8): e0236725. [ DOI:10.1371/journal.pone.0236725] 25. Li H, Wu X, Cheng X (2016) Advances in diagnosis and treatment of metastatic cervical cancer. Journal of Gynecologic Oncology, 27(4): e43. [ DOI:10.3802/jgo.2016.27.e43] 26. Cohen PA, Jhingran A, Oaknin A, Denny L (2019) Cervical cancer. Lancet (London, England), 393(10167): 169-82. [ DOI:10.1016/S0140-6736(18)32470-X] 27. Bedell SL, Goldstein LS, Goldstein AR, Goldstein AT (2020) Cervical Cancer screening: past, present, and future. Sexual Medicine Re views, 8(1): 28-37. [ DOI:10.1016/j.sxmr.2019.09.005] 28. Buskwofie A, David-West G, Clare CA (2020) A review of cervical cancer: incidence and disparities. Journal of the National Medical Association, 112(2): 229-32. [ DOI:10.1016/j.jnma.2020.03.002] 29. Somashekhar SP and Ashwin KR. (2015) Management of early-stage cervical cancer. Reviews on Recent Clinical Trials, 10(4): 302-8. [ DOI:10.2174/1574887110666150923113629] 30. Menderes G, Black J, Schwab CL, Santin AD (2016) Immunotherapy and targeted therapy for cervical cancer: an update. Expert Review of Anticancer Therapy, 16(1): 83-98. [ DOI:10.1586/14737140.2016.1121108] 31. Bizzarri N, Ghirardi V, Alessandri F, Venturini PL, Valenzano Mena da M, Rundle S, et al. (2016) Bevacizumab for the treatment of cer vical cancer. Expert Opinion on Biological Therapy, 16(3): 407-19. [ DOI:10.1517/14712598.2016.1145208] 32. Plummer C, Michael A, Shaikh G, Stewart M, Buckley L, Miles T, et al. (2019) Expert recommendations on the management of hyper tension in patients with ovarian and cervical cancer receiving bevacizumab in the UK. British Journal of Cancer, 121(2): 109-16. [ DOI:10.1038/s41416-019-0481-y] 33. Feng CH, Mell LK, Sharabi AB, McHale M, Mayadev JS (2020) Im munotherapy With radiotherapy and chemoradiotherapy for cervi cal cancer. Seminars in Radiation Oncology, 30(4):273-80. [ DOI:10.1016/j.semradonc.2020.05.003] 34. Colombo N, Dubot C, Lorusso D, Caceres MV, Hasegawa K, Shapira-Frommer R, et al. (2021) Pembrolizumab for persistent, recurrent, or metastatic cervical cancer. The New England Journal of Medi cine, 385(20): 1856-67. [ DOI:10.1056/NEJMoa2112435] 35. McNamara B, Chang Y, Mutlu L, Harold J, Santin AD (2023) Pem brolizumab with chemotherapy, with or without bevacizumab for persistent, recurrent, or metastatic cervical cancer. Expert Opinion on Biological Therapy, 23(3): 227-33. [ DOI:10.1080/14712598.2023.2182679] 36. Nishio S, Yonemori K, Usami T, Minobe S, Yunokawa M, Iwata T, et al. (2022) Pembrolizumab plus chemotherapy in Japanese patients with persistent, recurrent or metastatic cervical cancer: Results from KEYNOTE-826. Cancer Science, 113(11): 3877-87. [ DOI:10.1111/cas.15479] 37. Voelker RA (2023) Cervical Cancer Screening. JAMA, 330(20): 2030. [ DOI:10.1001/jama.2023.21987] 38. Haldorsen IS, Lura N, Blaakær J, Fischerova D, Werner HMJ (2019) What is the role of imaging at primary diagnostic work-up in uter ine cervical cancer? Current Oncology Reports, 21(9): 77. [ DOI:10.1007/s11912-019-0824-0] 39. Ahir BK, Engelhard HH, Lakka SS (2020) Tumor development and angiogenesis in adult brain tumor: Glioblastoma. Molecular Neuro biology, 57(5): 2461-78. [ DOI:10.1007/s12035-020-01892-8] 40. Li X, Zhou J, Wang X, Li C, Ma Z, Wan Q, et al. (2023) New advances in the research of clinical treatment and novel anticancer agents in tumor angiogenesis. Biomedicine & Pharmacotherapy, 163: 114806. [ DOI:10.1016/j.biopha.2023.114806] 41. Cannella R, Pilato G, Mazzola M, Bartolotta TV (2023) New micro vascular ultrasound techniques: abdominal applications. La Radio logia Medica, 128(9): 1023-34. [ DOI:10.1007/s11547-023-01679-6] 42. Han H, Ji Z, Ding H, Zhang W, Zhang R, Wang W (2019) Assessment of blood flow in the hepatic tumors using non-contrast micro flow imaging: Initial experience. Clinical Hemorheology Microcirculation, 73(2): 307-16. [ DOI:10.3233/CH-180532] 43. Zhang XY, Cai SM, Zhang L, Zhu QL, Sun Q, Jiang YX, et al. (2022) Association between vascular index measured via superb micro vascular imaging and molecular subtype of breast cancer. Frontiers in Oncology, 12: 861151. [ DOI:10.3389/fonc.2022.861151] 44. Senyuva I, Turan CO, Yuksel GY, Senturk S (2023) Superb microvas cular imaging doppler technique in the evaluation of ovarian stro mal vascularity in women with polycystic ovary syndrome. JPMA, 73(10): 1992-6. [ DOI:10.47391/JPMA.8347] 45. Li F, Sun W, Liu L, Meng Z, Su J (2022) The application value of CDFI and SMI combined with serological markers in distinguishing be nign and malignant thyroid nodules. Clinical & Translational Oncol ogy, 24(11): 2200-9. [ DOI:10.1007/s12094-022-02880-1] 46. Jin H, Wang C, Jin X (2022) Superb microvascular imaging for distin guishing thyroid nodules: A meta-analysis (PRISMA). Medicine, 101(24): e29505. [ DOI:10.1097/MD.0000000000029505] 47. Chae EY, Yoon GY, Cha JH, Shin HJ, Choi WJ, Kim HH (2021) Added Value of the vascular index on superb microvascular imaging for the evaluation of breast masses. Journal of Ultrasound in Medicine, 40(4): 715-23. [ DOI:10.1002/jum.15441]
|