[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

Volume 23, Issue 3 (7-2025)                   Int J Radiat Res 2025, 23(3): 635-641 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kim D, Jeon H, Ki Y, Joo J, Kim W, Kim D, et al . Therapeutic dose effects of target-volume changes during head and neck radiotherapy. Int J Radiat Res 2025; 23 (3) :635-641
URL: http://ijrr.com/article-1-6593-en.html
Department of Radiation Oncology and Research Institute, Pusan National University Yangsan Hospital and Pusan National University School of Medicine, Yangsan, South Korea , apex7171@hanmail.net
Abstract:   (434 Views)
Background: Due to the complicated dose calculations, in volumetric modulated arc therapy (VMAT), treatment errors may occur with changes around the lesion due to changes in the patient volume. The head and neck contain many major organs at risks (OAR)s increasing the likelihood of volume changes in OARs due to the effects of radiotherapy. Materials and Methods: The dose distribution and effects according to the changes in patient volume were analyzed while maintaining the same beam and irradiation conditions as in the initial treatment plan. The volume was extracted to quantify the volume change by setting the region of interest (ROI) of a fan-shaped area formed tangentially to the planning target volume (PTV), with the spinal cord as the center in the transverse plane. Results: As the radiation treatment progressed, the head and neck volume changes accelerated. As the volume change increased, the target's low-dose distribution area, the incident dose to the spinal cord and parotid gland, and the incident dose to the target periphery increased. In particular, an increase in the target's cold spot and the incident dose to the parotid gland can cause late effects as well as insufficient treatment. Conclusion: The alteration in dose distribution can be anticipated by monitoring the shift in patient volume using the ROI extraction method outlined in this study.
Full-Text [PDF 1151 kb]   (152 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology

References
1. 1. Intensity Modulated Radiation Therapy Collaborative Working Group (2001) Intensity-modulated radiotherapy: current status and is sues of interest. Int J Rad Oncol Biol Phys, 51: 880-914. [DOI:10.1016/S0360-3016(01)01749-7]
2. Chui CS and Spirou SV (2001) Inverse planning algorithms for exter nal beam radiation therapy. Med Dosimetry, 26(2): 189-197. [DOI:10.1016/S0958-3947(01)00069-3]
3. Leibel SA, Fuks Z, Zelefsky MJ, et al. (2003) Technological advances in external-beam radiation therapy for the treatment of localized pros tate cancer. Semin Oncol, 30(5): 596-615 [DOI:10.1016/S0093-7754(03)00354-3]
4. Lee N, Puri DR, Blanco AI, et al. (2007) Intensity-modulated radia tion therapy in head and neck cancers: an update. Head Neck J Sci Spec, 29(4): 387-400. [DOI:10.1002/hed.20332]
5. Bedford JL (2009) Treatment planning for volumetric modulated arc therapy. Med Phys, 36(11): 5128-5138. [DOI:10.1118/1.3240488]
6. Teoh M, Clark CH, Wood K, et al. (2011) Volumetric modulated arc therapy: a review of current literature and clinical use in practice. Br J Radiol, 84(1007): 967-996. [DOI:10.1259/bjr/22373346]
7. Barker JrJL, Garden AS, Ang KK, et al. (2004) Quantification of volu metric and geometric changes occurring during fractionated radio therapy for head-and-neck cancer using an integrated CT/linear accel erator system. Int J Radiat Oncol Biol Phys, 59(4): 960-970. [DOI:10.1016/j.ijrobp.2003.12.024]
8. Hansen EK, Bucci MK, Quivey JM, et al. (2006) Repeat CT imaging and replanning during the course of IMRT for head-and-neck cancer. Int J Radiat Oncol Biol Phys, 64(2): 355-362. [DOI:10.1016/j.ijrobp.2005.07.957]
9. Tyagi N, Yang K, Gersten D, et al. (2012) A real time dose monitoring and dose reconstruction tool for patient specific VMAT QA and deliv ery. Med Phys, 39(12): 7194-7204. [DOI:10.1118/1.4764482]
10. Lin S, Pan J, Han L, et al. (2009) Nasopharyngeal carcinoma treated with reduced-volume intensity-modulated radiation therapy: report on the 3-year outcome of a prospective series. Int J Radiat Oncol Biol Phys, 75(4): 1071-1078. [DOI:10.1016/j.ijrobp.2008.12.015]
11. Bhide SA, Davies M, Burke K, et al. (2010) Weekly volume and do simetric changes during chemoradiotherapy with intensity-modulated radiation therapy for head and neck cancer: a prospective observa tional study. Int J Radiat Oncol Biol Phys, 76(5): 1360-1368. [DOI:10.1016/j.ijrobp.2009.04.005]
12. Robar JL, Day A, Clancey J, et al. (2007) Spatial and dosimetric vari ability of organs at risk in head-and-neck intensity-modulated radio therapy. Int J Radiat Oncol Biol Phys, 68(4): 1121-1130. [DOI:10.1016/j.ijrobp.2007.01.030]
13. Osorio EMV, Hoogenman MS, Al-Mamgani A, et al. (2008) Local anatomic changes in parotid and submandibular glands during radio therapy for oropharynx cancer and correlation with dose, studied in detail with nonrigid registration. Int J Radiat Oncol Biol Phys, 70(3): 875-882. [DOI:10.1016/j.ijrobp.2007.10.063]
14. Lee C, Langen KM, Lu W, et al. (2008) Assessment of parotid gland dose changes during head and neck cancer radiotherapy using daily megavoltage computed tomography and deformable image registra tion. Int J Radiat Oncol Biol Phys, 71(5): 1563-1571. [DOI:10.1016/j.ijrobp.2008.04.013]
15. Fiorentino A, Caivano R, Metallo V, et al. (2012) Parotid gland volu metric changes during intensity-modulated radiotherapy in head and neck cancer. Brit J Radiol, 85(1018): 1415-1419. [DOI:10.1259/bjr/30678306]
16. Lees J (1999) Incidence of weight loss in head and neck cancer pa tients on commencing radiotherapy treatment at a regional oncology centre. Eur J Cancer Care, 8(3): 133-136. [DOI:10.1046/j.1365-2354.1999.00156.x]
17. Munshi A, Pandey MB, Durga T, et al. (2003) Weight loss during ra diotherapy for head and neck malignancies: what factors impact it?. Nutr Cancer, 47(2): 136-140. [DOI:10.1207/s15327914nc4702_5]
18. Chen J, Morin O, Aubin M, et al. (2006) Dose-guided radiation therapy with megavoltage cone-beam CT. Brit J Radiol, 79(special_issue_1): S87-S98. [DOI:10.1259/bjr/60612178]
19. Turkkan G, Caloglu M, Yurut-Caloglu V, et al. (2019) Evaluation of swallowing function with clinical and dosimetric parameters in head and neck cancer patients receiving radio (chemo) therapy. Int J Radiat Res, 17(4): 625-632.
20. Richter A, Hu Q, Steglich D, et al. (2008) Investigation of the usabil ity of conebeam CT data sets for dose calculation. Radiat Oncol, 3(1): 1-13. [DOI:10.1186/1748-717X-3-42]
21. Alaei P, Ding G, Guan H (2010) Inclusion of the dose from kilo voltage cone beam CT in the radiation therapy treatment plans. Med Phys, 37(1): 244-248. [DOI:10.1118/1.3271582]
22. Xing Y, Nguyen D, Lu W, et al. (2020) A feasibility study on deep learning‐based radiotherapy dose calculation. Med Phys, 47(2): 753-758. [DOI:10.1002/mp.13953]
23. Surucu M, Shah KK, Roeske JC, et al. (2017) Adaptive radiotherapy for head and neck cancer: implications for clinical and dosimetry out comes. TCRT, 16(2): 218-223. [DOI:10.1177/1533034616662165]
24. Noble DJ, Yeap PL, Seah SY, et al. (2019) Anatomical change during radiotherapy for head and neck cancer, and its effect on delivered dose to the spinal cord. Radiother Oncol, 130: 32-38. [DOI:10.1016/j.radonc.2018.07.009]
25. Loo H, Fairfoul J, Chakrabarti A, et al. (2011) Tumour Shrinkage and contour change during radiotherapy increase the dose to organs at risk but not the target volumes for head and neck cancer patients treated on the tomotherapy HiArtTM system. Clin Oncol, 23(1): 40-47. [DOI:10.1016/j.clon.2010.09.003]
26. Cooper JS, Fu K, Marks J, et al. (1995) Late effects of radiation ther apy in the head and neck region. Int J Radiat Oncol Biol Phys, 31(5): 1141-1164. [DOI:10.1016/0360-3016(94)00421-G]
27. Roesink JM, Moerland MA, Battermann JJ, et al. (2001) Quantita tive dose-volume response analysis of changes in parotid gland func tion after radiotherapy in the head-and-neck region. Int J Radiat Oncol Biol Phys, 51(4): 938-946. [DOI:10.1016/S0360-3016(01)01717-5]
28. Deasy JO, Moiseenko V, Marks L, et al. (2010) Radiotherapy dose-volume effects on salivary gland function. Int J Radiat Oncol Biol Phys, 76(3): S58-S63. [DOI:10.1016/j.ijrobp.2009.06.090]
29. Brook I (2020) Late side effects of radiation treatment for head and neck cancer. Radiat Oncol J, 38(2): 84. [DOI:10.3857/roj.2020.00213]
30. Hao X, Zhang C, Lv X (2021) Structural evaluation of parotid gland in post radiotherapy oral cancer patients: A prospective study. Int J Radiat Res, 19(3): 521-529. [DOI:10.52547/ijrr.19.3.521]
31. Height R Khoo V, Lawford C, et al. (2010) The dosimetric conse quences of anatomic changes in head and neck radiotherapy patients. JMIRO, 54(5): 497-504. [DOI:10.1111/j.1754-9485.2010.02209.x]
32. De Bari B, Ait Erraisse M, Chekrine T, et al. (2012) Does weight loss predict accuracy of setup in head and neck cancer patients treated with intensity-modulated radiation therapy. Radiol Med, 117(5): 885. [DOI:10.1007/s11547-011-0765-7]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

International Journal of Radiation Research
Persian site map - English site map - Created in 0.04 seconds with 50 queries by YEKTAWEB 4722