|
|
Ruan J, Qin Z, Chen P, Chen Y, Fang J, Tang H. Paeonol combined with radiotherapy inhibits the growth of human glioblastoma by inhibiting the two angiogenesis pathways of VEGF/VEGFR and ANG/Tie-2 in vitro. Int J Radiat Res 2025; 23 (3) :643-650 URL: http://ijrr.com/article-1-6609-en.html
Department of Cardiovascular Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China , tanghaoth@126.com
Abstract: (400 Views)
Background: The blockade of both VEGF / VEGFR and angiopoietin/TEK receptor tyrosine kinase (Tie-2) pathways can be considered an attractive approach to inhibition of angiogenesis in glioblastomas. Paeonol (Pae), a natural compound, has been identified to possess evidence of antitumor activity. Materials and Methods: In this study, the impact of Pae combined with radiotherapy on the glioblastoma angiogenesis pathways was investigated in vitro. For this purpose, effects of various doses of Pae alone or in combination of 2 Gy radiation was assessed using various endpoints such as gene expression, ᵧH2AX and apoptosis in glioblastoma cells. Results: Results indicated that Pae could induce the down-regulation of VEGF at the protein level and inhibit the mRNA and protein level of VEGFR1/2 in EA.hy926 cells. Pae and radiation co-treatment inhibited the protein levels of ANG1 and ANG2 in U251 cells and of Tie-2 in EA.hy926 cells. Notably, the combination therapy disrupted endothelial tube formation more effectively than Pae or radiation alone, reducing tubule length by 65% (p<0.001). However, we found that Pae had reduced the phosphorylation of Erk pathway in these cells. Pae enhanced radiation-induced DNA damage, as evidenced by increased γ-H2AX foci formation (p<0.01). The results further elucidate the multifaceted effects of Pae on tumor cell proliferation and angiogenesis in glioblastoma. Conclusion: Obtained results might imply that Pae might inhibit glioblastoma angiogenesis by the VEGF/VEGFR and ANG/Tie-2 pathways, with the Erk pathway potentially serving as a key mechanism. Our findings propose that Pae acts as a radiosensitizer while concurrently suppressing angiogenic signaling.
References
1. Noch EK, Ramakrishna R, Magge R (2018) Challenges in the Treat ment of glioblastoma: multisystem mechanisms of therapeutic re sistance. World Neurosurgery, 116: 505-17. [ DOI:10.1016/j.wneu.2018.04.022] 2. Ahir BK, Engelhard HH, Lakka SS (2020) Tumor development and an giogenesis in adult brain tumor: glioblastoma. Mol Neurobiol, 57: 2461-78. [ DOI:10.1007/s12035-020-01892-8] 3. Reardon DA, Lassman AB, Schiff D, Yunus SA, Gerstner ER, Cloughesy TF, et al. (2018) Phase 2 and biomarker study of treba nanib, an angiopoietin-blocking peptibody, with and without bevacizumab for patients with recurrent glioblastoma. Cancer, 124: 1438-48. [ DOI:10.1002/cncr.31172] 4. Marth C, Vergote I, Scambia G, Oberaigner W, Clamp A, Berger R, et al. (2017) ENGOT-ov-6/TRINOVA-2: Randomised, double-blind, phase 3 study of pegylated liposomal doxorubicin plus trebananib or placebo in women with recurrent partially platinum-sensitive or resistant ovarian cancer. Eur J Cancer, 70: 111-21. [ DOI:10.1016/j.ejca.2016.09.004] 5. Zhou J, Wang K, Ding S, Zeng L, Miao J, Cao Y, et al. (2022) Anti-VEGFR2-labeled enzyme-immobilized metal-organic frameworks for tumor vasculature targeted catalytic therapy. Acta Biomater, 141: 364-73. [ DOI:10.1016/j.actbio.2022.01.037] 6. Soni H, Bode J, Nguyen CDL, Puccio L, Neßling M, Piro RM, et al. (2020) PERK-mediated expression of peptidylglycine α-amidating monooxygenase supports angiogenesis in glioblastoma. Oncogene sis, 9: 18. [ DOI:10.1038/s41389-020-0201-8] 7. Biterge-Sut B (2020) A comprehensive analysis of the angiogenesis-related genes in glioblastoma multiforme vs. brain lower grade gli oma. Arq Neuropsiquiatr, 78: 34-8. [ DOI:10.1590/0004-282x20190131] 8. Zhang R, Yao Y, Gao H, Hu X (2024) Mechanisms of angiogenesis in tumor. Front Oncol, 14: 1359069. [ DOI:10.3389/fonc.2024.1359069] 9. Liu L, Qin S, Zheng Y, Han L, Zhang M, Luo N, et al. (2017) Molecular targeting of VEGF/VEGFR signaling by the anti-VEGF monoclonal antibody BD0801 inhibits the growth and induces apoptosis of hu man hepatocellular carcinoma cells in vitro and in vivo. Cancer Biol Ther, 18: 166-76. [ DOI:10.1080/15384047.2017.1282019] 10. Karimzadeh P, Faghih Z, Rahmani N, Eghbali F, Razmkhah M (2020) Quantification of angiogenic factors and their clinicopathological associations in breast cancer. Eur Cytokine Netw, 31: 68-75. [ DOI:10.1684/ecn.2020.0447] 11. Edatt L, Poyyakkara A, Raji GR, Ramachandran V, Shankar SS, Ku mar VBS (2019) Role of sirtuins in tumor angiogenesis. Front Oncol, 9: 1516. [ DOI:10.3389/fonc.2019.01516] 12. Kumar M, Dhatwalia SK, Dhawan DK (2016) Role of angiogenic fac tors of herbal origin in regulation of molecular pathways that con trol tumor angiogenesis. Tumour Biol, 37: 14341-54. [ DOI:10.1007/s13277-016-5330-5] 13. Hong M, Shi H, Wang N, Tan H-Y, Wang Q, Feng Y (2019) Dual effects of chinese herbal medicines on angiogenesis in cancer and ischemic stroke treatments: role of HIF-1 network. Front Pharma col, 10: 696. [ DOI:10.3389/fphar.2019.00696] 14. Lee H-J, Kim S-A, Lee H-J, Jeong S-J, Han I, Jung JH, et al. (2010) Paeonol oxime inhibits bFGF-induced angiogenesis and reduces VEGF levels in fibrosarcoma cells. PLoS One, 5: e12358. [ DOI:10.1371/journal.pone.0012358] 15. Kim S-A, Lee H-J, Ahn KS, Lee H-J, Lee E-O, Ahn K-S, et al. (2009) Paeonol exerts anti-angiogenic and anti-metastatic activities through downmodulation of Akt activation and inactivation of ma trix metalloproteinases. Biol Pharm Bull, 32: 1142-7. [ DOI:10.1248/bpb.32.1142] 16. Zhou H-M, Sun Q-X, Cheng Y (2017) Paeonol enhances the sensi tivity of human ovarian cancer cells to radiotherapy-induced apop tosis due to downregulation of the phosphatidylinositol-3-kinase/Akt/phosphatase and tensin homolog pathway and inhibition of vascular endothelial growth factor. Exp Ther Med, 14: 3213-20. [ DOI:10.3892/etm.2017.4877] 17. Philipp W, Speicher L, Humpel C (2000) Expression of vascular en dothelial growth factor and its receptors in inflamed and vascular ized human corneas. Invest Ophthalmol Vis Sci, 41: 2514-22. 18. Nie X, Ou-yang J, Xing Y, Li D, Dong X, Liu R, et al. (2015) Paeoni florin inhibits human glioma cells via STAT3 degradation by the ubiquitin-proteasome pathway. Drug Des Devel Ther, 9: 5611-22. [ DOI:10.2147/DDDT.S93912] 19. Lei Y, Li HX, Jin WS, Peng WR, Zhang CJ, Bu LJ, Du YY, Ma T, Sun GP (2013) The radiosensitizing effect of Paeonol on lung adenocarci noma by augmentation of radiation-induced apoptosis and inhibi tion of the PI3K/Akt pathway. Int J Radiat Biol, 89(12): 1079-86. [ DOI:10.3109/09553002.2013.825058] 20. Zhou HM, Sun QX, Cheng Y (2017) Paeonol enhances the sensitivi ty of human ovarian cancer cells to radiotherapy-induced apopto sis due to downregulation of the phosphatidylinositol-3-kinase/Akt/phosphatase and tensin homolog pathway and inhibition of vascular endothelial growth factor. Exp Thera Med, 14(4): 3213-20. [ DOI:10.3892/etm.2017.4877] 21. Anthony C, Mladkova-Suchy N, Adamson DC (2019) The evolving role of antiangiogenic therapies in glioblastoma multiforme: cur rent clinical significance and future potential. Expert Opin Investig Drugs, 28: 787-97. [ DOI:10.1080/13543784.2019.1650019] 22. Melincovici CS, Boşca AB, Şuşman S, Mărginean M, Mihu C, Istrate M, et al. (2018) Vascular endothelial growth factor (VEGF)-key fac tor in normal and pathological angiogenesis. Rom J Morphol Em bryol, 59: 455-67. 23. Ceci C, Atzori MG, Lacal PM, Graziani G (2020) Role of VEGFs/VEGFR-1 signaling and its inhibition in modulating tumor invasion: experimental evidence in different metastatic cancer models. Int J Mol Sci, 21: 1388. [ DOI:10.3390/ijms21041388] 24. Lamszus K, Ulbricht U, Matschke J, Brockmann MA, Fillbrandt R, Westphal M (2003) Levels of soluble vascular endothelial growth factor (VEGF) receptor 1 in astrocytic tumors and its relation to malignancy, vascularity, and VEGF-A. Clin Cancer Res, 9: 1399-405. 25. Campanella R, Guarnaccia L, Cordiglieri C, Trombetta E, Caroli M, Carrabba G, et al. (2020) Tumor-educated platelets and angiogene sis in glioblastoma: another brick in the wall for novel prognostic and targetable biomarkers, changing the vision from a localized tu mor to a systemic pathology. Cells, 9: 294. [ DOI:10.3390/cells9020294] 26. Kim MM, Umemura Y, Leung D (2018) Bevacizumab and glioblas toma: past, present, and future directions. Cancer J, 24: 180-6. [ DOI:10.1097/PPO.0000000000000326] 27. Shim WSN, Ho IAW, Wong PEH (2007) Angiopoietin: a TIE(d) bal ance in tumor angiogenesis. Mol Cancer Res, 5: 655-65. [ DOI:10.1158/1541-7786.MCR-07-0072] 28. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mito gen. Science, 246: 1306-9. [ DOI:10.1126/science.2479986] 29. Tan S, Chen Y, Du S, Li W, Liu P, Zhao J, et al. (2022) TIE2-high cer vical cancer cells promote tumor angiogenesis by upregulating TIE2 and VEGFR2 in endothelial cells. Transl Oncol, 26: 101539. [ DOI:10.1016/j.tranon.2022.101539] 30. Saharinen P, Eklund L, Alitalo K (2017) Therapeutic targeting of the angiopoietin-TIE pathway. Nat Rev Drug Discov, 16: 635-61. [ DOI:10.1038/nrd.2016.278] 31. Leong A and Kim M (2020) The Angiopoietin-2 and TIE pathway as a therapeutic target for enhancing antiangiogenic therapy and im munotherapy in patients with advanced cancer. Int J Mol Sci, 21: 8689. [ DOI:10.3390/ijms21228689] 32. Caporarello N, Lupo G, Olivieri M, Cristaldi M, Cambria MT, Salmeri M, et al. (2017) Classical VEGF, Notch and Ang signalling in cancer angiogenesis, alternative approaches and future directions (Review). Mol Med Rep, 16: 4393-402. [ DOI:10.3892/mmr.2017.7179] 33. Mueller T, Freystein J, Lucas H, Schmoll H-J (2019) Efficacy of a bispecific antibody co-targeting VEGFA and Ang-2 in Combination with chemotherapy in a chemoresistant colorectal carcinoma xen ograft model. Molecules, 24: 2865. [ DOI:10.3390/molecules24162865] 34. Ao L, Gao H, Jia L, Liu S, Guo J, Liu B, et al. (2022) Matrine inhibits synovial angiogenesis in collagen-induced arthritis rats by regu lating HIF-VEGF-Ang and inhibiting the PI3K/Akt signaling pathway. Mol Immunol, 141: 13-20. [ DOI:10.1016/j.molimm.2021.11.002] 35. Lee WH, Cho HJ, Sonntag WE, Lee YW (2011) Radiation attenuates physiological angiogenesis by differential expression of VEGF, Ang-1, tie-2 and Ang-2 in rat brain. Radiat Res, 176: 753-60. [ DOI:10.1667/RR2647.1] 36. Fagiani E and Christofori G (2013) Angiopoietins in angiogenesis. Cancer Lett, 328: 18-26. [ DOI:10.1016/j.canlet.2012.08.018] 37. Chang X, Feng X, Du M, Li S, Wang J, Wang Y, et al. (2023) Pharma cological effects and mechanisms of paeonol on antitumor and prevention of side effects of cancer therapy. Front Pharmacol, 14: 1194861. [ DOI:10.3389/fphar.2023.1194861] 38. Ding W-B, Ning Q, Xia Z, Song J, Zhou X-W, Chen X-W (2020) Study on synergistic anti-tumor effect of Shuangdan Capsules combined with 5-FU on hepatocellular carcinoma cells Huh-7 and xenograft mice. Zhongguo Zhong Yao Za Zhi, 45: 5762-9. 39. Li M, Tan S-Y, Wang X-F (2014) Paeonol exerts an anticancer effect on human colorectal cancer cells through inhibition of PGE₂ syn thesis and COX-2 expression. Oncol Rep, 32: 2845-53. [ DOI:10.3892/or.2014.3543] 40. Sun G-P, Wang H, Xu S-P, Shen Y-X, Wu Q, Chen Z-D, et al. (2008) Anti-tumor effects of paeonol in a HepA-hepatoma bearing mouse model via induction of tumor cell apoptosis and stimulation of IL-2 and TNF-α production. Eur J Pharmacol, 584: 246-52. [ DOI:10.1016/j.ejphar.2008.02.016] 41. Nizamutdinova IT, Oh HM, Min YN, Park SH, Lee MJ, Kim JS, et al. (2007) Paeonol suppresses intercellular adhesion molecule-1 ex pression in tumor necrosis factor-α-stimulated human umbilical vein endothelial cells by blocking p38, ERK and nuclear factor-κB signaling pathways. Int Immunopharmacol, 7: 343-50. [ DOI:10.1016/j.intimp.2006.11.004] 42. Bhattacharya D, Chaudhuri S, Singh MK, Chaudhuri S (2015) T11TS inhibits Angiopoietin-1/Tie-2 signaling, EGFR activation and Raf/MEK/ERK pathway in brain endothelial cells restraining angiogene sis in glioma model. Exp Mol Pathol, 98: 455-66. [ DOI:10.1016/j.yexmp.2015.03.026] 43. Zhang Y, Wang P, Zhang Q, Yao X, Zhao L, Liu Y, et al. (2017) eIF3i activity is critical for endothelial cells in tumor induced angiogene sis through regulating VEGFR and ERK translation. Oncotarget, 8: 19968-79. [ DOI:10.18632/oncotarget.15274] 44. Zhang Y, Ding X, Miao C, Chen J (2019) Propofol attenuated TNF-α-modulated occludin expression by inhibiting Hif-1α/ VEGF/ VEGFR-2/ ERK signaling pathway in hCMEC/D3 cells. BMC Anesthesiology, 19: 127. [ DOI:10.1186/s12871-019-0788-5] 45. Su C-C (2018) Tanshinone IIA inhibits gastric carcinoma AGS cells by decreasing the protein expression of VEGFR and blocking Ras/Raf/MEK/ERK pathway. Int J Mol Med, 41: 2389-96. [ DOI:10.3892/ijmm.2018.3407]
|