[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

Volume 23, Issue 3 (7-2025)                   Int J Radiat Res 2025, 23(3): 659-664 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kim D, Jeon H, Ki Y, Joo J, Kim W, Kim D, et al . Study to improve reproducibility and accuracy of DIBH for breast cancer radiotherapy: A laser-based self-monitoring system. Int J Radiat Res 2025; 23 (3) :659-664
URL: http://ijrr.com/article-1-6611-en.html
Department of Radiation Oncology and Research Institute, Pusan National University Yangsan Hospital and Pusan National University School of Medicine, Yangsan, South Korea , apex7171@hanmail.net
Abstract:   (378 Views)
Background: Deep-inspiration breath-hold (DIBH) is a helpful technique during radiation therapy (RT) for breast cancer that can protect vital organs and deliver a more accurate treatment dose to the target. A laser sensor-based position monitoring system is developed to measure the absolute position of an object and achieve high accuracy and reproducibility during DIBH. Materials and Methods: A laser distance sensor (LDS) was fabricated to be mounted on a commercially available breast board and configured to provide real-time monitoring to assist with respiratory control. DIBH was measured in 10 volunteers with and without self-monitoring. Using an anthropomorphic phantom, we calculated the change in dose distribution due to DIBH error. We estimated the change in dose to target, the heart, and left lung due to DIBH error from the volunteer data. Results: With monitoring, the DIBH error was within 2 mm; without monitoring, the DIBH error increased to approximately 5 mm. Some of the volunteers who did not perform self-monitoring had large DIBH errors. This resulted in suboptimal dose distributions to the target, heart, and left lung, due to unintended alterations in the intended dose distribution. Conclusion: A self-monitoring system using LDS can greatly assist in the reproducibility of DIBH, thus helping to maintain the planned prescribed dose.
Full-Text [PDF 1691 kb]   (105 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology

References
1. 1. National Cancer Center (2019) Annual report of cancer statistics in Korea in 2017.
2. Liljegren G, Holmberg L, Adami HO, et al. (1994) Sector resection with or without postoperative radiotherapy for stage I breast cancer: five-year results of a randomized trial. Cancer Inst, 86(9): 717-722. [DOI:10.1093/jnci/86.9.717]
3. Jagsi R, Griffith KA, Moran JM, et al. (2018) A randomized comparison of radiation therapy techniques in the management of node-positive breast cancer: primary outcomes analysis. Int J Radiat Oncol Biol Phys, 101(5): 1149-1158. [DOI:10.1016/j.ijrobp.2018.04.075]
4. Farzin M, Garosi M, Rajabpour MV, et al. (2022) Deep inspiration breath hold (DIBH) for cardiac sparing in breast cancer radiotherapy. Int J Radiat Res, 20(1): 91-95. [DOI:10.52547/ijrr.20.1.14]
5. Sixel KE, Aznar MC, Ung YC (2001) Deep inspiration breath hold to reduce irradiated heart volume in breast cancer patients. Int J Radiat Oncol Biol Phys, 49(1): 199-204. [DOI:10.1016/S0360-3016(00)01455-3]
6. Remouchamps VM, Vicini FA, Sharpe MB, et al. (2003) Initial clinical experience with moderate deep-inspiration breath hold using an active breathing control device in the treatment of patients with left-sided breast cancer using external beam radiation therapy. Int J Radiat Oncol Biol Phys, 56(3): 704-715. [DOI:10.1016/S0360-3016(03)00010-5]
7. Berson AM, Emery R, Rodriguez L, et al. (2004) Clinical experience using respiratory gated radiation therapy: comparison of free-breathing and breath-hold techniques. Int J Radiat Oncol Biol Phys, 60(2): 419-426. [DOI:10.1016/j.ijrobp.2004.03.037]
8. Hayden AJ, Rains M, Tiver K (2012) Deep inspiration breath hold technique reduces heart dose from radiotherapy for left‐sided breast cancer. J Med Imaging Radiat Oncol, 56(4): 464-472. [DOI:10.1111/j.1754-9485.2012.02405.x]
9. Bruzzaniti V, Abate A, Pinnarò P, et al. (2013) Dosimetric and clinical advantages of deep inspiration breath-hold (DIBH) during radiotherapy of breast cancer. J Exp Clin Cancer Res, 32: 1-7. [DOI:10.1186/1756-9966-32-88]
10. Alço G, Ercan T, İǧdem Ş, et al. (2022) Deep inspiration breath hold in left sided tangential breast radiotherapy: Degree of lung inflation needed to compensate for cardiac motion. Int J Radiat Res, 20(2): 329-334. [DOI:10.52547/ijrr.20.2.11]
11. Sung K, Lee KC, Lee SH, et al. (2014) Cardiac dose reduction with breathing adapted radiotherapy using self respiration monitoring system for left-sided breast cancer. Radiat Oncol J, 32(2): 84. [DOI:10.3857/roj.2014.32.2.84]
12. Schönecker S, Walter F, Freislederer P, et al. (2016) Treatment planning and evaluation of gated radiotherapy in left-sided breast cancer patients using the Catalyst TM/Sentinel TM system for deep inspiration breath-hold (DIBH). Radiat Oncol, 11: 1-10. [DOI:10.1186/s13014-016-0716-5]
13. Haddad P, Hadjilooei F, Nedaei HA, et al. (2019) Influence of different treatment planning techniques on radiation doses to the heart, left anterior descending coronary artery and left lung in the radiotherapy of left-sided breast cancer patients. Int J Radiat Res, 17(1): 119-25.
14. Parlar S, Var G, Cosar R, et al. (2022) Investigation of cardiac and pulmonary doses in patients with left sided breast cancer treated by radiotherapy with deep inspiration breath hold technique. Int J Radiat Res, 20(2): 369-375. [DOI:10.52547/ijrr.20.2.17]
15. Arslan A, Aktaş E, Eren SK, et al. (2023) Dosimetric comparison of the heart substructures with IMRT and VMAT techniques in left breast radiotherapy: The effect of deep inspiratory breath-hold. Int J Radiat Res, 21(1): 23-30.
16. Pedersen AN, Korreman S, Nyström H, et al. (2004) Breathing adapted radiotherapy of breast cancer: reduction of cardiac and pulmonary doses using voluntary inspiration breath-hold. Radiother Oncol. 72(1): 53-60. [DOI:10.1016/j.radonc.2004.03.012]
17. Korreman SS, Pedersen AN, Nøttrup TJ, et al. (2005) Breathing adapted radiotherapy for breast cancer: comparison of free breathing gating with the breath-hold technique. Radiother Oncol, 76(3): 311-318. [DOI:10.1016/j.radonc.2005.07.009]
18. Vedam SS, Keall PJ, Kini VR, et al. (2001) Determining parameters for respiration‐gated radiotherapy. Med Phys,28(10): 2139-2146. [DOI:10.1118/1.1406524]
19. Betgen A, Alderliesten T, Sonke J, et al. (2013) Assessment of set-up variability during deep inspiration breath hold radiotherapy for breast cancer patients by 3D-surface imaging. Radiot Oncol, 106(2): 225-230. [DOI:10.1016/j.radonc.2012.12.016]
20. Kügele M, Edvardsson A, Berg L, et al. (2017) Dosimetric effects of intrafractional isocenter variation during deep inspiration breath‐hold for breast cancer patients using surface‐guided radiotherapy. J Appl Clin Med Phys, 19(1): 25-38. [DOI:10.1002/acm2.12214]
21. Gnerucci A, Esposito M, Ghirelli A, et al. (2023) Surface-guided DIBH radiotherapy for left breast cancer: impact of different thresholds on intrafractional motion monitoring and DIBH stability. Strahlenther Onkol. 199(1): 55-66. [DOI:10.1007/s00066-022-02008-y]
22. Killick R, Feamhead P, Eckley IA (2012) Optimal detection of changepoints with a linear computational cost. J Am Stat Assoc, 107(500): 1590-1598. [DOI:10.1080/01621459.2012.737745]
23. Lavielle M (2005) Using penalized contrasts for the change-point problem. Signal processing, 85(8): 1501-1510. [DOI:10.1016/j.sigpro.2005.01.012]
24. Fassi A, Ivaldi GB, Meaglia I, et al. (2014) Reproducibility of the external surface position in left‐breast DIBH radiotherapy with spirometer‐based monitoring. J Appl Clin Med Phys, 15(1): 130-140. [DOI:10.1120/jacmp.v15i1.4494]
25. Chan YY, Ku KM, Ng YP, et al. (2020) Evaluation of an in-house self-held respiration monitoring device for deep inspiration breath hold techniques for radiotherapy of patients with cancer of the left breast. JRP, 19(2): 122-126. [DOI:10.1017/S1460396919000517]
26. Ku KM, Ng YP, Yu SK, et al. (2018) To evaluate the use of a homemade self-held respiration monitoring device (SHRMD) for deep inspiration breath hold (DIBH) radiation therapy to left breast cancer patients. Int J Radiat Oncol Biol Phys, 102(3): e556. [DOI:10.1016/j.ijrobp.2018.07.1547]
27. Lu W, Li G, Hong L, et al. (2023) Reproducibility of chestwall and heart position using surface-guided versus RPM-guided DIBH radiotherapy for left breast cancer. J Appl Clin Med Phys, 24(1): e13755. [DOI:10.1002/acm2.13755]
28. Xiao A, Crosby J, Malin M, et al. (2018) Single-institution report of setup margins of voluntary deep-inspiration breath-hold (DIBH) whole breast radiotherapy implemented with real-time surface imaging. J Appl Clin Med Phys, 19(4): 205-213. [DOI:10.1002/acm2.12368]
29. Penninkhof J, Fremeijer K, Offereins-van Harten K, et al. (2022) Evaluation of image-guided and surface-guided radiotherapy for breast cancer patients treated in deep inspiration breath-hold: A single institution experience. tipsRO, 21: 51-57. [DOI:10.1016/j.tipsro.2022.02.001]
30. Zhao H, Sarkar V, Paxton A, et al. (2023) Technical note: Clinical evaluation of a newly released surface-guided radiation therapy system on DIBH for left breast radiation therapy. Med Phys, 50(10): 5978-5986. [DOI:10.1002/mp.16699]
31. Abubakar A and Zin HM. (2020) Characterisation of Time-of-Flight (ToF) imaging system for application in monitoring deep inspiration breath-hold radiotherapy (DIBH-RT). BPEX, 6(6): 065032. [DOI:10.1088/2057-1976/abc635]
32. Shahzadeh S, Barough MS, Ganjoorian H, et al. (2022) Comparison of normal tissue doses in deep inspiration breath-hold and free breathing methods for radiotherapy of left-sided breast cancer using 4D-XCAT digital phantom. J Cancer Res Ther, 18(Suppl 2): S335-S340. [DOI:10.4103/jcrt.JCRT_1681_20]
33. Goodall SK and Rampant PL (2023) Initial end-to-end testing of the ExacTrac dynamic deep inspiration breath hold workflow using a breath hold breast phantom. PESM, 46(3): 1239-1247. [DOI:10.1007/s13246-023-01291-y]
34. Lai J, Luo Z, Hu H, et al. (2023) SGRT-based DIBH radiotherapy practice for right-sided breast cancer combined with RNI: A retrospective study on dosimetry and setup accuracy. J Appl Clin Med Phys, 24(8): e13998.2 [DOI:10.1002/acm2.13998]
35. Wu J, Yang F, Li J, et al. (2024) Reproducibility and stability of voluntary deep inspiration breath hold and free breath in breast radiotherapy based on real-time 3-dimensional optical surface imaging system. Radiat Oncol, 19(1): 158. [DOI:10.1186/s13014-024-02549-9]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

International Journal of Radiation Research
Persian site map - English site map - Created in 0.04 seconds with 50 queries by YEKTAWEB 4722