[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
IJRR Information::
For Authors::
For Reviewers::
News & Events::
Web Mail::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
Hard Copy 2322-3243
Online 2345-4229
Online Submission
Now you can send your articles to IJRR office using the article submission system.



:: Volume 20, Issue 3 (7-2022) ::
Int J Radiat Res 2022, 20(3): 521-529 Back to browse issues page
Liposomal silibinin as a potential radioprotector of human lymphocytes in the treatment of non-small cell lung cancer
M.H. Nguyen , N.D. Pham , Q.T. Che , T.H.N. Nguyen , N.B.D. Vu , T.N.M. Tran , T.K. Trinh , N.A. Trinh , B.N. Pham , V.D. Le
Center of Radiation Technology and Biotechnology, Nuclear Research Institute, Dalat city, Lam-dong province, Vietnam , jackminhhiep@yahoo.com
Abstract:   (951 Views)
Background: This study aimed to investigate the radioprotective effect of liposomal silibinin (Lip-SIL) on human lymphocytes in the treatment of non-small lung cancer cells using a combined method of cell viability assay and cytokinesis-block micronucleus assay for a better evaluation of whether one active compound is suitable to be used as a radioprotector in radiotherapy or not. Materials and Methods: Firstly, Lip-SIL was prepared by the lipid film hydration method combined with sonication. Secondly, penetration of Lip-SIL into cells was observed by fluorescence microscopy. Finally, the potential application of Lip-SIL as a radioprotector of human lymphocytes in the treatment of non-small cell lung cancer was evaluated using the above combined method with A549 cell line as a model. Results: The successfully prepared Lip-SIL had a spherical shape and good physical characteristics (particle size of approximately 83.9 nm, zeta potential of -20.6 mV, encapsulation efficiency of 28.8 % and payload of 5.1 %). At a SIL concentration of 10 µg/mL, Lip-SIL exhibited the highest radioprotection for lymphocytes, but showed no radioprotection or even increased genotoxicity in human lung cancer A549 cells. Conclusion: Lip-SIL is a potential protector of human lymphocytes during radiotherapy in the treatment of non-small lung cancer. Moreover, the results of this study also imply that the radioprotection ability of bioactive compounds for normal cells is not only based on their scavenging activity on reactive oxygen species (ROS) but also on their mechanisms of intracellular activations.
Keywords: Liposomes, lung cancer, radioprotection, radiotherapy, silibinin.
Full-Text [PDF 2025 kb]   (508 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
1. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin, 70: 7-30. https://doi.org/10.3322/caac.21601 [DOI:10.3322/caac.21590]
2. Azzam EI, Jay-Gerin JP, Pain D (2012) Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett, 327: 48-60. [DOI:10.1016/j.canlet.2011.12.012] [PMID] []
3. Abratt RP and Morgan GW (2002) Lung toxicity following chest irradiation in patients with lung cancer. Lung Cancer, 35: 103-109. [DOI:10.1016/S0169-5002(01)00334-8] [PMID]
4. Kong FM, Hayman JA, Griffith KA, Kalemkerian GP, Arenberg D, Lyons S, Turrisi A, Lichter A, Fraass B, Eisbruch A, Lawrence TS, Haken RKT (2006) Final toxicity results of a radiation-dose escalation study in patients with non-small-cell lung cancer (NSCLC): predictors for radiation pneumonitis and fibrosis. Int J Radiat Oncol Biol Phys, 65: 1075-1086. [DOI:10.1016/j.ijrobp.2006.01.051] [PMID]
5. Nguyen MH, Duy PN, Dong B, Nguyen THN, Bui CB, Hadinoto K (2017) Radioprotective activity of curcumin-encapsulated liposomes against genotoxicity caused by gamma Cobalt-60 irradiation in human blood cells. Int J Radiat Biol, 93: 1267-1273. [DOI:10.1080/09553002.2017.1380329] [PMID]
6. Xie X, Gong S, Jin H, Yang P, Xu T, Cai Y, Guo C, Zhang R, Lou F, Yang W, Wang H (2020) Radiation-induced lymphopenia correlates with survival in nasopharyngeal carcinoma: impact of treatment modality and the baseline lymphocyte count. Radiat Oncol, 15: 65. [DOI:10.1186/s13014-020-01494-7] [PMID] []
7. Yamamori T, Yasui H, Yamazumi M, Wada Y, Nakamura Y, Nakamura H, Inanami O (2012) Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint. Free Radical Biol Med, 53: 260-270. https://doi.org/10.1016/j.freeradbiomed.2012.08.556 [DOI:10.1016/j.freeradbiomed.2012.04.033]
8. Li L, Zeng J, Gao Y, He D (2010) Targeting silibinin in the antiproliferative pathway. Expert Opin Investig Drugs, 19: 243-255. [DOI:10.1517/13543780903533631] [PMID]
9. Aprotosoaie AC, Trifan A, Gille E, Petreus T, Bordeianu G, Miron A (2015) Can phytochemicals be a bridge to develop new radioprotective agents?. Phytochem Rev, 14: 555-566. [DOI:10.1007/s11101-014-9379-8]
10. Gupta OP, Sing S, Bani S, Sharma N, Malhotra S, Gupta BD, Banerjee SK, Handa SS (2000) Anti-inflammatory and anti-arthritic activities of silymarin acting through inhibition of 5-lipoxygenase. Phytomedicine, 7: 21-24. [DOI:10.1016/S0944-7113(00)80017-3] [PMID]
11. Singh RP, Deep G, Chittezhath M, Kaur M, Dwyer-Nield LD, Malkinson AM, Agarwal R (2006) Effect of silibinin on the growth and progression of primary lung tumors in mice. J Natl Cancer Inst, 98: 846-855. [DOI:10.1093/jnci/djj231] [PMID]
12. Naso LG, Ferrer EG, Butenko N, Cavaco I, Lezama L, Rojo T, Etcheverry SB, Williams PAM (2011) Antioxidant, DNA cleavage, and cellular effects of silibinin and a new oxovanadium (IV)/Silibinin complex. J Biol Inorg Chem, 16: 653-668. [DOI:10.1007/s00775-011-0769-8] [PMID]
13. Mateen S, Raina K, Agarwal R (2013) Chemopreventive and anti-cancer efficacy of SIL against growth and progression of lung cancer. Nutr Cancer, 65: 3-11. [DOI:10.1080/01635581.2013.785004] [PMID] []
14. Tiwari P, Kumar A, Ali M, Mishra KP (2010) Radioprotection of plasmid and cellular DNA and Swiss mice by silibinin. Mutat Res, 695: 55-60. [DOI:10.1016/j.mrgentox.2009.11.007] [PMID]
15. Nguyen HM, Yu H, Dong B, Hadinoto K (2016) A supersaturating delivery system of silibinin exhibiting high payload achieved by amorphous nano-complexation with chitosan. Eur J Pharm Sci, 89: 163-171. [DOI:10.1016/j.ejps.2016.04.036] [PMID]
16. Wu JW, Lin LC, Hung SC, Chi CW, Tsai TH (2007) Analysis of silibinin in rat plasma and bile for hepatobiliary excretion and oral bioavailability application. J Pharm Biomed Anal, 45: 635-641. [DOI:10.1016/j.jpba.2007.06.026] [PMID]
17. Fatehi D, Mohammadi M, Shekarchi B, Shabani A, Seify M, Rostamzadeh A (2018) Radioprotective effects of Silymarin on the sperm parameters of NMRI mice irradiated with gamma-rays. J Photochem Photobiol B, 178: 489-495. [DOI:10.1016/j.jphotobiol.2017.12.004] [PMID]
18. Lutsenko SV, Gromovykh TI, Krasnyuk II, Vasilenko IA, Feldman NB (2018) Antihepatotoxic activity of Liposomal silibinin. Bionanosci, 8: 581-586. [DOI:10.1007/s12668-018-0512-9]
19. Redon CE, Dickey JS, Bonner WM, Sedelnikova OA (2009) γ-H2AX as a biomaker of DNA induced by ionizing radiation in human peripheral blood lymphocytes and artificial skin. Adv Space Res, 43: 1171-1178. [DOI:10.1016/j.asr.2008.10.011] [PMID] []
20. Whitlon DS, Baas PW (1992) Improved methods for using glass coverslips in cell culture and electron microscopy. J Histochem Cytochem, 40: 875-877. [DOI:10.1177/40.6.1588032] [PMID]
21. Ak T and Gülçin I (2008) Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact, 174: 27-37. [DOI:10.1016/j.cbi.2008.05.003] [PMID]
22. Gülçin I (2007) Comparison of in vitro antioxidant and antiradical activities of L-tyrosine and L-Dopa. Amino Acids, 32: 431-438. [DOI:10.1007/s00726-006-0379-x] [PMID]
23. Fenech M (2010) The lymphocytes cytokinesis-block micronucleus cytome assay and its application in radiation biodosimetry. Health Phys, 98: 234-243. [DOI:10.1097/HP.0b013e3181b85044] [PMID]
24. Strober W (2015) Trypan blue exclusion test of cell viability. Curr Protoc Immunol, 111: A3.B.1-A3.B.3. [DOI:10.1002/0471142735.ima03bs111] [PMID] []
25. Ochi AM, Amoabediny G, Rezayat S, Akbarzadeh A, Ebrahimi B (2015) Design and preparation of encapsulated nano-liposome controlled release including silibinin anti-cancer herbal drug (nano phytosome). JSSU, 23: 2000-2012.
26. Ducat E, Evrard B, Peulen O, Piel G (2011) Cellular uptake of liposomes monitored by confocal microscopy and flow cytometry. J Drug Del Sci Tech, 21: 469-477. [DOI:10.1016/S1773-2247(11)50076-0]
27. Jian Y, Azadeh B, Geert D, Jeroen B, René CLO, Alexander K (2016) Drug delivery via cell membrane fusion using lipopeptide modified liposomes. ACS Cent Sci, 2: 621-630. [DOI:10.1021/acscentsci.6b00172] [PMID] []
28. Gao X, Yue T, Tian F, Liu Z, Zhang X (2017) Erythrocyte membrane skeleton inhibits nanoparticle endocytosis. AIP Adv, 7: 065303. [DOI:10.1063/1.4985052]
29. Amiri B, Ebrahimi-Far M, Saffari Z, Akbarzadeh A, Soleimani E, Chiani M (2016) Preparation, characterization and cytotoxicity of silibinin containing nanoniosomes in T47 human breast carcinoma cells. Asian Pac J Cancer Prev, 17: 3835-3838.
30. Poljsak B, Suput D, Milisav I (2013) Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxid Med Cell Longev, 956792. [DOI:10.1155/2013/956792] [PMID] []
31. Nambiar DK, Rajamani P, Deep G, Jain AK, Agarwal R, Singh RP (2015) Silibinin preferentially radiosensitizes prostate cancer by inhibiting DNA repair signaling. Mol Cancer Ther, 14: 2722-2734. [DOI:10.1158/1535-7163.MCT-15-0348] [PMID] []
32. Loguercio C and Festi D (2011) Silybin and the liver: From basic research to clinical practice. World J Gastroenterol, 17: 2288-2301. [DOI:10.3748/wjg.v17.i18.2288] [PMID] []
33. Zhou B, Wu LJ Tashiro S, Onodera S, Uchiumi F, Ikejima T (2006) Silibinin protects rat cardiac myocyte from isoproterenol-induced DNA damage independent on regulation of cell cycle. Biol Pharm Bull, 29: 1990-1995. [DOI:10.1248/bpb.29.1900] [PMID]
34. Xu S, Zhang H, Wang A, Ma Y, Gan Y, Li G (2020) Silibinin suppresses epithelial-mesenchymal transition in human non-small cell lung cancer cells by restraining RHBDD1. Cell Mol Biol Lett, 25: 36. [DOI:10.1186/s11658-020-00229-6] [PMID] []
35. Zhang X, Zhao Y, Wang C, Ju H, Liu W, Zhang X, Miao S, Wang L, Sun Q, Song W (2018) Rhomboid domain-containing protein 1 promotes breast cancer progression by regulating the p-Akt and CDK2 levels. Cell Commun Signal, 16: 65. [DOI:10.1186/s12964-018-0267-5] [PMID] []
Send email to the article author

Add your comments about this article
Your username or Email:


XML     Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nguyen M, Pham N, Che Q, Nguyen T, Vu N, Tran T, et al . Liposomal silibinin as a potential radioprotector of human lymphocytes in the treatment of non-small cell lung cancer. Int J Radiat Res 2022; 20 (3) :521-529
URL: http://ijrr.com/article-1-4319-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 20, Issue 3 (7-2022) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.08 seconds with 50 queries by YEKTAWEB 4624