[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 20, Issue 3 (7-2022) ::
Int J Radiat Res 2022, 20(3): 627-633 Back to browse issues page
A Study on the correlation between brain functional and structural changes and altered cognitive function after radiotherapy for nasopharyngeal carcinoma
C-H. Qin , S-J. Qiu , H-Z. Wang , F-H. Duan , D-L. Wu , X. Leng
Medical Imaging Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China , lengxi1022@163.com
Abstract:   (821 Views)
Background: To explore the changes of brain function and structure after radiotherapy (RT) for nasopharyngeal carcinoma (NPC), to investigate their correlation with altered cognitive function and to promote the recognition of radiation-induced brain injury (RBI). Materials and Methods: Resting-state functional MRI (rs-fMRI) and three dimensional (3D) T1-weighted imaging scans were conducted on 32 patients and 34 healthy subjects. Cognitive function was assessed in all subjects using multiple cognitive scales. Differences in regional homogeneity (ReHo) and brain gray matter (GM) volumes between groups were analyzed using the DPARSF package and VBM methods. Results: ReHo in Cerebelum_Crus2_L of the NPC patients was significantly higher than that in the controls, and was significantly correlated with memory, general cognitive function, and executive ability. The GM volumes in right fusiform gyrus (FFG.R), left temporal pole: middle temporal gyrus (TPOmid.L), left inferior temporal gyrus (ITG.L), Cerebelum_6_L, and left middle frontal gyrus (MFG.L) in the patients were significantly reduced compared with the controls, and were markedly correlated with multiple cognitive scale scores. Conclusion: Damage to brain after radiotherapy mostly involving the temporal lobe and cerebellum, manifested by a compensatory increase in ReHo and a decrease in GM volume, both of which were significantly correlated with multiple cognitive impairments. ReHo and brain GM volume can be considered as sensitive biomarkers to monitor RBI.
Keywords: Radiation-induced brain injury, resting-state functional magnetic resonance, brain gray matter volume, cognitive function.
Full-Text [PDF 1755 kb]   (355 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. Get persistent links for your reference list or bibliography. Copy and paste the list, we’ll match with our metadata and return the links. Members may also deposit reference lists here too. 1. Xia C, Yu XQ, Zheng R, et al. (2017) Spatial and temporal patterns of nasopharyngeal carcinoma mortality in China, 1973-2005. Cancer Lett, 401: 33-38. [DOI:10.14315/evth-1973-jg32]
2. Li Y, Huang X, Jiang J, et al. (2018) Clinical variables for prediction of the therapeutic effects of bevacizumab monotherapy in nasopharyngeal carcinoma patients with radiation-induced brain necrosis. Int J Radiat Oncol Biol Phys, 100: 621-629. [DOI:10.1016/j.ijrobp.2017.11.023] [PMID]
3. Lin X, Tang L, Li M, et al. (2021) Irradiation-related longitudinal white matter atrophy underlies cognitive impairment in patients with nasopharyngeal carcinoma. Brain Imaging Behav, 15: 2426-2435. [DOI:10.1007/s11682-020-00441-0] [PMID]
4. Makale MT, McDonald CR, Hattangadi-Gluth JA, et al. (2017) Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours. Nat Rev Neurol, 13: 52-64. [DOI:10.1038/nrneurol.2016.185] [PMID] []
5. Yang Y, Lin X, Li J, et al. (2019) Aberrant brain activity at early delay stage post-radiotherapy as a biomarker for predicting neurocognitive dysfunction late-delayed in patients with nasopharyngeal carcinoma. Front Neurol, 10: 752. [DOI:10.3389/fneur.2019.00752] [PMID] []
6. Leng X, Qin C, Lin H, et al. (2021) Altered Topological Properties of Static/Dynamic Functional Networks and Cognitive Function After Radiotherapy for Nasopharyngeal Carcinoma Using Resting-State fMRI. Front Neurosci, 15: 690743. [DOI:10.3389/fnins.2021.690743] [PMID] []
7. Zuo XN and Xing XX (2014) Test-retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: a systems neuroscience perspective. Neurosci Biobehav Rev, 45: 100-118. [DOI:10.1016/j.neubiorev.2014.05.009] [PMID]
8. Zhao Z, Tang C, Yin D, et al. (2018) Frequency-specific alterations of regional homogeneity in subcortical stroke patients with different outcomes in hand function. Hum Brain Mapp, 39: 4373-4384. [DOI:10.1002/hbm.24277] [PMID] []
9. Lin WC, Hsu TW, Chen CL et al (2015) Resting State-fMRI with ReHo Analysis as a Non-Invasive Modality for the Prognosis of Cirrhotic Patients with Overt Hepatic Encephalopathy. PLoS One, 10: e0126834. [DOI:10.1371/journal.pone.0126834] [PMID] []
10. Nguyen KP, Raval V, Treacher A, et al. (2021) Predicting Parkinson's disease trajectory using clinical and neuroimaging baseline measures. Parkinsonism Relat Disord, 85: 44-51. [DOI:10.1016/j.parkreldis.2021.02.026] [PMID] []
11. Chan YL, Leung SF, King AD, et al. (1999) Late radiation injury to the temporal lobes: morphologic evaluation at MR imaging. Radiology, 213: 800-807. [DOI:10.1148/radiology.213.3.r99dc07800] [PMID]
12. Chong VF, Fan YF, Mukherji SK (2000) Radiation-induced temporal lobe changes: CT and MR imaging characteristics. AJR Am J Roentgenol, 175: 431-436. [DOI:10.2214/ajr.175.2.1750431] [PMID]
13. Norris AM, Carrington BM, Slevin NJ (1997) Late radiation change in the CNS: MR imaging following gadolinium enhancement. Clin Radiol, 52: 356-362. [DOI:10.1016/S0009-9260(97)80130-4] [PMID]
14. Lv X, He H, Yang Y, et al. (2019) Radiation-induced hippocampal atrophy in patients with nasopharyngeal carcinoma early after radiotherapy: a longitudinal MR-based hippocampal subfield analysis. Brain Imaging Behav, 13: 1160-1171. [DOI:10.1007/s11682-018-9931-z] [PMID]
15. Guo Z, Han L, Yang Y, et al. (2018) Longitudinal brain structural alterations in patients with nasopharyngeal carcinoma early after radiotherapy. Neuroimage Clin, 19: 252-259. [DOI:10.1016/j.nicl.2018.04.019] [PMID] []
16. Chapman CH, Nagesh V, Sundgren PC, et al. (2012) Diffusion tensor imaging of normal-appearing white matter as biomarker for radiation-induced late delayed cognitive decline. Int J Radiat Oncol Biol Phys, 82: 2033-2040. [DOI:10.1016/j.ijrobp.2011.01.068] [PMID] []
17. Diamond A (2013) Executive functions. Annu Rev Psychol, 64: 135-168. [DOI:10.1146/annurev-psych-113011-143750] [PMID] []
18. Muir RT, Lam B, Honjo K, et al. (2015) Trail making test elucidates neural substrates of specific poststroke executive dysfunctions. Stroke, 46: 2755-2761. [DOI:10.1161/STROKEAHA.115.009936] [PMID] []
19. Zhao Q, Guo Q, Liang X, et al. (2015) Auditory Verbal Learning Test is Superior to Rey-Osterrieth Complex Figure Memory for Predicting Mild Cognitive Impairment to Alzheimer's Disease. Curr Alzheimer Res, 12: 520-526. [DOI:10.2174/1567205012666150530202729] [PMID]
20. Chen X, Hu N, Wang Y, et al. (2020) Validation of a brain-computer interface version of the digit symbol substitution test in healthy subjects. Comput Biol Med, 120: 103729. [DOI:10.1016/j.compbiomed.2020.103729] [PMID]
21. Chao-Gan Y and Yu-Feng Z (2010) DPARSF: A MATLAB Toolbox for "Pipeline" Data Analysis of Resting-State fMRI. Front Syst Neurosci, 4: 13.
22. Whitwell JL (2009) Voxel-based morphometry: an automated technique for assessing structural changes in the brain. J Neurosci, 29: 9661-9664. [DOI:10.1523/JNEUROSCI.2160-09.2009] [PMID] []
23. Qiu Y, Guo Z, Han L, et al. (2018) Network-level dysconnectivity in patients with nasopharyngeal carcinoma (NPC) early post-radiotherapy: longitudinal resting state fMRI study. Brain Imaging Behav, 12: 1279-1289. [DOI:10.1007/s11682-017-9801-0] [PMID]
24. Gazdzinski LM, Cormier K, Lu FG, et al. (2012) Radiation-induced alterations in mouse brain development characterized by magnetic resonance imaging. Int J Radiat Oncol Biol Phys, 84: e631-638. [DOI:10.1016/j.ijrobp.2012.06.053] [PMID]
25. Mulderink TA, Gitelman DR, Mesulam MM, et al. (2002) On the use of caffeine as a contrast booster for BOLD fMRI studies. Neuroimage, 15: 37-44. [DOI:10.1006/nimg.2001.0973] [PMID]
26. Diserbo M, Agin A, Lamproglou I, et al. (2002) Blood-brain barrier permeability after gamma whole-body irradiation: an in-vivo microdialysis study. Can J Physiol Pharmacol, 80: 670-678. [DOI:10.1139/y02-070] [PMID]
27. Xu X, Huang H, Tu Y, et al. (2021) Celecoxib Alleviates Radiation-Induced Brain Injury in Rats by Maintaining the Integrity of Blood-Brain Barrier. Dose Response, 19: 15593258211024393. [DOI:10.1177/15593258211024393] [PMID] []
28. Hu F, Li T, Wang Z, et al. (2017) Use of 3D-ASL and VBM to analyze abnormal changes in brain perfusion and gray areas in nasopharyngeal carcinoma patients undergoing radiotherapy. Biomed Res, 28: 7879-85.
29. Chen Q, Lv X, Zhang S, et al. (2020) Altered properties of brain white matter structural networks in patients with nasopharyngeal carcinoma after radiotherapy. Brain Imaging Behav, 14: 2745-2761. [DOI:10.1007/s11682-019-00224-2] [PMID]
30. Wang HZ, Qiu SJ, Lv XF, et al. (2012) Diffusion tensor imaging and 1H-MRS study on radiation-induced brain injury after nasopharyngeal carcinoma radiotherapy. Clin Radiol, 67: 340-345. [DOI:10.1016/j.crad.2011.09.008] [PMID]
31. Xiong WF, Qiu SJ, Wang HZ, et al. (2013) 1H-MR spectroscopy and diffusion tensor imaging of normal-appearing temporal white matter in patients with nasopharyngeal carcinoma after irradiation: initial experience. J Magn Reson Imaging, 37: 101-108. [DOI:10.1002/jmri.23788] [PMID]
32. Cao S, Nie J, Zhang J, et al. (2021) The Cerebellum Is Related to Cognitive Dysfunction in White Matter Hyperintensities. Front Aging Neurosci, 13: 670463. [DOI:10.3389/fnagi.2021.670463] [PMID] []
33. Ahmadian N, van Baarsen K, van Zandvoort M, et al. (2019) The Cerebellar Cognitive Affective Syndrome-a Meta-analysis. Cerebellum, 18: 941-950. [DOI:10.1007/s12311-019-01060-2] [PMID] []
34. Schmahmann JD (2019) The cerebellum and cognition. Neurosci Lett, 688:62-75 [DOI:10.1016/j.neulet.2018.07.005] [PMID]
35. Ding Z, Zhang H, Lv XF et al. (2018) Radiation-induced brain structural and functional abnormalities in presymptomatic phase and outcome prediction. Hum Brain Mapp, 39: 407-427. [DOI:10.1002/hbm.23852] [PMID] []
36. Lv XF, Zheng XL, Zhang WD, et al. (2014) Radiation-induced changes in normal-appearing gray matter in patients with nasopharyngeal carcinoma: a magnetic resonance imaging voxel-based morphometry study. Neuroradiology, 56: 423-430. [DOI:10.1007/s00234-014-1338-y] [PMID]
37. Nagtegaal SHJ, David S, Snijders TJ, et al. (2020) Effect of radiation therapy on cerebral cortical thickness in glioma patients: Treatment-induced thinning of the healthy cortex. Neurooncol, Adv 2: vdaa060. [DOI:10.1093/noajnl/vdaa060] [PMID] []
38. Lin J, Lv X, Niu M, et al. (2017) Radiation-induced abnormal cortical thickness in patients with nasopharyngeal carcinoma after radiotherapy. Neuroimage Clin, 14: 610-621. [DOI:10.1016/j.nicl.2017.02.025] [PMID] []
39. Leng X, Fang P, Lin H, et al. (2017) Structural MRI research in patients with nasopharyngeal carcinoma following radiotherapy: A DTI and VBM study. Oncol Lett, 14: 6091-6096. [DOI:10.3892/ol.2017.6968] [PMID] []
40. Sestieri C, Corbetta M, Romani GL, et al. (2011) Episodic memory retrieval, parietal cortex, and the default mode network: functional and topographic analyses. J Neurosci, 31: 4407-4420. [DOI:10.1523/JNEUROSCI.3335-10.2011] [PMID] []
41. Astle DE, Luckhoo H, Woolrich M, et al. (2015) The Neural Dynamics of Fronto-Parietal Networks in Childhood Revealed using Magnetoencephalography. Cereb Cortex, 25: 3868-3876. [DOI:10.1093/cercor/bhu271] [PMID] []
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Qin C, Qiu S, Wang H, Duan F, Wu D, Leng X. A Study on the correlation between brain functional and structural changes and altered cognitive function after radiotherapy for nasopharyngeal carcinoma. Int J Radiat Res 2022; 20 (3) :627-633
URL: http://ijrr.com/article-1-4350-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 20, Issue 3 (7-2022) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 50 queries by YEKTAWEB 4645