[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 20, Issue 3 (7-2022) ::
Int J Radiat Res 2022, 20(3): 635-642 Back to browse issues page
Preparation, molecular modeling and in-vivo evaluation of 99-mTc-Oseltamivir as a tumor diagnostic agent
S.B. Challan , S.I. Khater , A.M. Rashad
Cyclotron Project, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt , sabkhater@yahoo.com
Abstract:   (989 Views)
Background: Radiolabeling process has a very important role in prediction of in-vivo biodistribution. Moreover, biodistribution is considered the backbone of the recent discovery of anti-cancer drugs.Technetium-99m has been the most utilized radionuclide in nuclear medicine due to its optimal physical characteristics. Materials and Methods: Oseltamivir(Osel) was radiolabeled by technetium-99m under reductive conditions directly.1.5 mg of Osel was followed by 25 μg of SnCl2. H2O, 200 μl buffer pH 4 at 60ºC reaction temperature, and the reaction time was 30 minutes. In-vivo biodistribution of 99mTc-Oseltamivir (99mTc-Osel) tracer was studied using tumor-bearing Albino mice compared to control. The radiochemical purity percentage was calculated using the ascending paper chromatography technique and also, confirmed by paper electrophoresis before the in-vivo biodistribution in mice.99mTc-Osel tracer was further analyzed utilizing high performance liquid chromatography analysis .Spartan software for molecular modeling is used for optimizing the different complex patterns of Osel with 99mTc where energy was minimized using the semi-empirical method with a PM3 basis set. Result: 99mTc-Osel tracer was synthesized with a good yield of 98.7±0.34% at the optimized conditions and the preparation exhibited in-vitro stability up to 3 h. In vivo biodistribution studies showed high uptake in tumor cells with the target to the non-target ratio of 4.55±0.2 after 3 h. post- injection. Conclusion: 99mTc-Osel tracer focuses on the tumor site with a high percentage appropriate to use 99mTc-Osel as a useful tool for tumor imaging.
Keywords: Oseltamivir, technetium-99m, spartan, in-vivo biodistrbution.
Full-Text [PDF 1777 kb]   (451 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. Schunemann HJ, Hill SR, Kakad M, Bellamy R, Uyeki TM, Hayden FG (2007) WHO Rapid Advice Guidelines for pharmacological management of sporadic human infection with avian influenza A (H5N1) virus. The Lancet Infectious Diseases, 7(1): 21-31. [DOI:10.1016/S1473-3099(06)70684-3]
2. Ward P, Small I, Smith J, Suter P, Dutkowski R (2005) Oseltamivir (Tamiflu) and its potential for use in the event of an influenza pandemic. Journal of Antimicrobial Chemotherapy, 55: (S1, i5-i21). [DOI:10.1093/jac/dki018] [PMID]
3. Reddy LH, Sharma RK, Murthy RS, (2004) Enhanced tumour uptake of doxorubicin loaded poly (butyl cyanoacrylate) nanoparticles in mice bearing Dalton's lymphoma tumour. J Drug Target, 12: 443-451. [DOI:10.1080/10611860400011406] [PMID]
4. Amin AM, El-Azony KM, Ibrahim IT (2009) Application of 99Mo/99mTc alumina generator in the labeling of metoprolol for diagnostic purposes. J Labell Compd Radiopharm, 52: 467-472. [DOI:10.1002/jlcr.1661]
5. Wilson JC and von Itzstein M (2003) Recent strategies in the search for new anti-influenza therapies. Current Drug Targets, 4(5):3 89-408. PMID: 12816348. [DOI:10.2174/1389450033491019] [PMID]
6. Seddon BM and Workman P (2003) The role of functional and molecular imaging in cancer drug discovery and development. Br J Radiol, 76(2): S128-38. [DOI:10.1259/bjr/27373639] [PMID]
7. Chidambaram M, Manavalan R, KathiresanK (2011) Nanotherapeutics to overcome conventional cancer chemotherapy limitations. J Pharm PharmSci, 14(1): 67-77. [DOI:10.18433/J30C7D] [PMID]
8. Garraway LA and Janne PA (2012) Circumventing cancer drug resistance in the era of personalized medicine. Cancer Discov, 2(3): 214-26. [DOI:10.1158/2159-8290.CD-12-0012] [PMID]
9. Cunningham VJ, Parker CA, Rabiner EA, Gee AD, Gunn RN (2005) PET studies in drug development: methodological considerations. Drug Discov Today Technol, 2: 311-5. [DOI:10.1016/j.ddtec.2005.11.003] [PMID]
10. Rischin D, Hicks RJ, Fisher R, Binns D, Corry J, Porceddu S, Peters LJ (2006) Trans-Tasman radiation oncology group study 98.02. Prognostic significance of (18F)-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a sub study of Trans-Tasman Radiation Oncology Group Study 98.02. J ClinOncol, 24(13): 2098-104. [DOI:10.1200/JCO.2005.05.2878] [PMID]
11. Altiparmak B, Lambrecht FY, Bayrak E, Durkan K, (2010) Design and synthesis of 99mTc-citro-folate for use as a tumor targeted radiopharmaceutical. Int J Pharm, 400(1-2): 8-14. [DOI:10.1016/j.ijpharm.2010.08.002] [PMID]
12. Stypinski D, McQuarrie SA, McEwan AJB, Wiebe LI (2018) Pharmacokinetics and scintigraphic imaging of the hypoxia imaging agent (123I) IAZA in healthy adults following exercise based cardiac stress. Pharmaceutics 10: 25. [DOI:10.3390/pharmaceutics10010025] [PMID] []
13. Hesselewwod S and Leubg E (1994) Drug interactions with radiopharmaceuticals. Eur J Nucl Med, 21: 348. [DOI:10.1007/BF00947972] [PMID]
14. Early PJ and Sodee DB (1995) Principles and practice of nuclear medicine. Mosby- Year Book, Inc., Toronto, 877.
15. Saha GB (1998) Fundamentals of nuclear pharmacy. Springer-Verlag, New York, pp.: 331. [DOI:10.1007/978-1-4757-2934-4]
16. Sampson CB., (1996), Complications and difficulties in radiolabelling blood cells: a review. Nucl Med Commun, 17(8): 648-58. [DOI:10.1097/00006231-199608000-00002] [PMID]
17. Richardson VJ, Jeyasingh K, Jewkes RF (1977), Properties of 99mTechnetium labeled liposomes innormal and tumor bearing rats. BiochemSoc Trans, 5: 290-291. [DOI:10.1042/bst0050290] [PMID]
18. Cheng CH, Meares CF, Godwin DA (1983) Application of nuclear and radiochemistry, Lambrecht, R.M. and Morcos, N., Eds., New York: Pergamon.
19. Abd El-Ghany EA (1998) Preparation and evaluation of freeze dried kits for 99mTc labeling, M.Sc. Thesis, Faculty of Pharmacy, Cairo Univ. (Egypt).
20. Gandomkar M, Najafi R, Mazidi M, Mirfallah SH, Goudarzi M (2009) Three different procedures in labeling of Ubiquicidin with technetium 99m: a comparative study. Int J Radiat Res, 7(2): 97-104.
21. Massoud A, Safaa BC, Maziad N (2021) Characterization of polyvinylpyrrolidone (PVP) with technetium-99m and its accumulation in mice. Part a: Journal of Macromolecular Science, Pure and Applied Chemistry, 58(6): 408-418. [DOI:10.1080/10601325.2021.1873070]
22. Challan SB and Massoud A (2017) Radiolabeling of grapheme oxide by Technetium-99m for infection imaging in rats. J Radioanal Nucl Chem, 314(3): 2189. [DOI:10.1007/s10967-017-5561-y]
23. Challan SB, Fawzy AM, Massoud A (2020) Synthesis of radioiodinatedcarnosine for hepatotoxicity imaging induced by carbon tetrachloride and its biological assessment in rats. Radiochem Acta, 108: 397-408. [DOI:10.1515/ract-2019-3162]
24. Ibrahim T, Walyb MA, El-Tawoosy M (2012) Synthesis, Labeling, and Biological Evaluation of 2-{(Benzyl (cyanomethyl) amino)methyl}-3-(ethoxycarbonyl)-quinoxaline 1,4-Dioxide in Ascites Bearing Mice. Radiochemistry, 54(4): 395-40. [DOI:10.1134/S1066362212040157]
25. Nagarajan JSK and Muralidharan S (2009) A validated RP-HPLC method for estimation of Oseltamivir in pharmaceutical formulation. Der Pharmacia Lettre, 1(1): 162-168.
26. Motaleb MA, Farouk N, El-Kolaly MT, et al. (2007) Synthesis of 99m Tc-L-carnitine as a model for tumor imaging.
27. Arab J Nucl SciAppl, 40(2): 101.
28. NDong C, Tate JA, Kett WC, Batra J, Demidenko E, Lewis LD, Hoopes PJ, Gerngross TU, Griswold KE (2015) Tumor cell targeting by iron oxide nanoparticles is dominated by different factors In-vitro versus In-vivo. plos one, 10(2): 1-18. [DOI:10.1371/journal.pone.0115636] [PMID] []
29. Jagetia GC and Rao SK (2006) Evaluation of antineoplastic activity Guduchi (Tinosporacordifolia) in Ehrlich Ascites Carcinoma bearing mice. Biological and Pharmaceutical Bulletin, 29: 460-66. [DOI:10.1248/bpb.29.460] [PMID]
30. Konan YN, Cerny R, Favet J, Berton M, Gurny R, Allemann E (2003) Preparation and characterization of sterile sub-200 nm meso-tetra (4-hydroxylphenyl)porphyrin-loaded nanoparticles for photodynamic therapy. Eur J Pharm Biopharm, 55: 115-124. [DOI:10.1016/S0939-6411(02)00128-5] [PMID]
31. Nour SA, Abdelmalak NS, Naguib MJ, Rashed HM, Ibrahim AB (2016) Intranasal brain-targeted clonazepam polymeric micelles for immediate control of status epilepticus: In-vitro optimization, ex vivo determination of cytotoxicity, in vivo biodistribution and pharmacodynamics studies. Drug Deliv, 23: 3681-3695. [DOI:10.1080/10717544.2016.1223216] [PMID]
32. Mohamed KO, Nissan YM, El-Malah AA, Ahmed WA, Ibrahim DM, Sakr TM, Motaleb MA (2017) Design, Synthesis and Biological Evaluation of Some Novel Sulfonamide Serivatives as Apoptotic Agents. Eur J Med Chem, 135: 424-433. [DOI:10.1016/j.ejmech.2017.04.069] [PMID]
33. Breeman WA, Hofland LJ, Bakker WH, van der Pluij M, Van Koetsveld PM, de Jong M, Setyono-Han B, Kwekkeboom DJ, Visser TJ, Lamberts SW, Krenning EP (1993) Radioiodinatedsomatostatin analogue RC-160: preparation, biological activity, in-vivo application in rats and comparison with (123I-Tyr3)octreotide. Eur J Nucl Med, 20: 1089-1094. [DOI:10.1007/BF00173488] [PMID]
34. Al-wabli RI, Sakr, TM, Khedr MA, Adli ASA, Motaleb MA, Zaghary WA (2016) Platelet-12 lipoxygenase targeting via newly synthesized curcumin derivative radiolabeled with technetium-99m. Chem Cent J, 10: 73. [DOI:10.1186/s13065-016-0220-x] [PMID] []
35. Tubergen K, Corlija M, VolkertWA, Holmes RA (1991) Sensitivity of technetium- 99m-d, 1-HMPAO to radiolysis in aqueous solutions. J Nucl Med, 32: 111-115.
36. Motaleb MA, Ibrahem IT, Ayoub VR, Geneidi AS (2016) Preparation and biological evaluation of 99mTc-ropinirole as a novel radiopharmaceutical for brain imaging. J Label CompdRadiopharm, 59: 147-152. [DOI:10.1002/jlcr.3380] [PMID]
37. Geskovski N, Kuzmanovska S, Simonoska Crcarevska M, Calis S, Dimchevska S, Petrusevska M, Zdravkovski P, Goracinova K (2013) Comparative biodistribution studies of technetium-99 m radiolabeled amphiphilic nanoparticles using three different reducing agents during the labeling procedure. J Labelled Comp Radiopharm, 56(14): 689-95. [DOI:10.1002/jlcr.3097] [PMID]
38. Sanad MH, Farouk N, Fouzy ASM (2017) Radiocomplexation and bioevaluation of 99mTc nitrido-piracetam as a model for brain imaging. Radiochimica Acta, 105(9): 729-737. [DOI:10.1515/ract-2016-2714]
39. Sanad MH, El-Bayoumy ASA, Ibrahim AA (2017) Comparative biological evaluation between 99mTc (CO) 3 and 99mTc-Sn (II) complexes of novel quinoline derivative: a promising infection radiotracer. J RadioanalNucl Chem, 311: 1-14. [DOI:10.1007/s10967-016-4945-8]
40. Srivastava SC and Richards P (1983) Technetium-labled compounds. In Radiotracers for Medical Applications, CRC Series in Radiotracers in Bioliology and Medicine, 1st ed.; Rayudu, G.V.S., Ed.; CRC Press: Boca Raton, FL, USA.
41. Sakr TM, Khedr MA, Rashed HM, Mohamed ME (2018) In Silico-Based Repositioning of Phosphinothricin as a Novel Technetium-99m Imaging Probe with Potential Anti-Cancer Activity. Molecules, 23: 496. [DOI:10.3390/molecules23020496] [PMID] []
42. Satpati D, Korde A, Venkatesh M, Banerjee S (2009) Preparation and bioevaluation of a 99mTc-labeled chlorambucil analog as a tumor targeting agent. Appl Radiat Isot, 67: 1644-1649. [DOI:10.1016/j.apradiso.2009.02.003] [PMID]
43. Zhang J, Yu Q, Huo J, Pang Y, Yang S, He Y, Tang T, Yang C, Wang X (2010), Synthesis and biodistribution of a novel 99mTc-DMSA metronidazole ester as a potential tumor hypoxia imaging agent. J Radioanal Nucl Chem, 283: 481-485. [DOI:10.1007/s10967-010-0455-2]
44. Sakr TM, El-Safoury DM, Awad GAS, Motaleb MA (2013) Biodistribution of 99mTc-sunitinib as a potential radiotracer for tumor hypoxia imaging. J Label Compd Radiopharm, 56: 392-395. [DOI:10.1002/jlcr.3060] [PMID]
45. El-Sharawy DM, Khater SI, Essam HM, Noheir HS, Hossam MH, Elmaidomy AH (2021) 99mTc-Luteolin: Radiolabeling, In Silico ADMET and Biological Evaluation as a Natural Tracer Tumor imaging. J Radiat Res and Appl Sci, 14(1): 125-132. [DOI:10.1080/16878507.2021.1881400]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Challan S, Khater S, Rashad A. Preparation, molecular modeling and in-vivo evaluation of 99-mTc-Oseltamivir as a tumor diagnostic agent. Int J Radiat Res 2022; 20 (3) :635-642
URL: http://ijrr.com/article-1-4355-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 20, Issue 3 (7-2022) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 50 queries by YEKTAWEB 4660