[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 20, Issue 4 (10-2022) ::
Int J Radiat Res 2022, 20(4): 727-736 Back to browse issues page
Treatment strategies for radiation-induced brain injury
Y. Zhang , G. Ou , Q. Li , S. Ma , L. Du
School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China , mashan76@sina.com
Abstract:   (1104 Views)
Radiation-induced brain injury (RIBI) is a common complication in patients with head and neck tumors. RIBI usually occurs six months to three years after therapy and is often accompanied by cognitive dysfunction, epilepsy, and other neurological dysfunctions. In severe cases, RIBI can cause a wide range of cerebral edema and herniation. A systematic search was conducted through PubMed/Medline, EMBASE, and Cochrane library databases and articles with the keywords radiation-induced brain injury, pathogenesis and protective agents were collected. The commonly known pathogenesis of RIBI includes vascular injury, immune-inflammatory response, glial cell damage, and neuronal damage. Therapeutic agents, hyperbaric oxygen, surgery, and stem cells transplantation are the most common treatment for RIBI. Tamoxifen, curcumin, and quercetin can prevent glial cell activation, proliferation, and oxidative stress caused by irradiation. Over recent years, the RIBI remission rate has gradually increased; however, there are still no effective prevention and treatment methods. This review summarized recent progress in the treatment for RIBI, as well as the pathogenesis of RIBI, including vascular injury, glial cell injury, immune-inflammatory response, and neuronal damage.
Keywords: Radiation-induced brain injury (RIBI), conventional medicine, pathogenesis, hyperbaric oxygen (HBO), protective agents.
Full-Text [PDF 2255 kb]   (1135 Downloads)    
Type of Study: Review article | Subject: Radiation Biology
References
1. 1. Yu X, Li M, Zhu L, Li J, Zhang G, Fang R, Wu Z, Jin Y (2020) Amifostine-loaded armored dissolving microneedles for long-term prevention of ionizing radiation-induced injury. Acta Biomater, 112: 87-100. [DOI:10.1016/j.actbio.2020.05.025] [PMID]
2. Kim JH, Brown SL, Jenrow KA, Ryu S (2008) Mechanisms of radiation-induced brain toxicity and implications for future clinical trials. Journal of Neuro-oncology, 87(3): 279-286. [DOI:10.1007/s11060-008-9520-x] [PMID]
3. Greene-Schloesser D, Robbins ME, Peiffer AM, Shaw EG, Wheeler KT, Chan MD (2012) Radiation-induced brain injury: A review. Frontiers Oncology, 2: 73. [DOI:10.3389/fonc.2012.00073] [PMID] []
4. Greene-Schloesser D, Moore E, Robbins ME (2013) Molecular pathways: radiation-induced cognitive impairment. Clinical Cancer Research, 19(9):2294-2300. [DOI:10.1158/1078-0432.CCR-11-2903] [PMID] []
5. Robbins ME, Brunso-Bechtold JK, Peiffer AM, Tsien CI, Bailey JE, Marks LB (2012) Imaging radiation-induced normal tissue injury. Radiation Resarch, 177(4): 449-466. [DOI:10.1667/RR2530.1] [PMID] []
6. Schultheiss TE, Stephens LC (1992) Invited review: permanent radiation myelopathy. The British Journal of Radiology, 65(777): 737-753. [DOI:10.1259/0007-1285-65-777-737] [PMID]
7. Tofilon PJ and Fike JR (2000) The radioresponse of the central nervous system: a dynamic process. Radiation Research, 153(4): 357-370. [DOI:10.1667/0033-7587(2000)153[0357:TROTCN]2.0.CO;2]
8. Sheline GE, Wara WM, Smith V (1980) Therapeutic irradiation and brain injury. Int J Radiat Oncol Biol Phys, 6(9): 1215-1228. [DOI:10.1016/0360-3016(80)90175-3]
9. Wang YX, King AD, Zhou H, Leung SF, Abrigo J, Chan YL, Hu CW, Yeung DK, Ahuja AT (2010) Evolution of radiation-induced brain injury: MR imaging-based study. Radiology, 254(1): 210-218. [DOI:10.1148/radiol.09090428] [PMID]
10. Yang J, Gao J, Han D, Li Q, Liao C, Li J, Wang R, Luo Y (2020) Hippocampal changes in inflammasomes, apoptosis, and MEMRI after radiation-induced brain injury in juvenile rats. Radiation Oncology, 15(1): 1-11. [DOI:10.1186/s13014-020-01525-3] [PMID] []
11. Zhuang H, Shi S, Yuan Z, Chang JY (2019) Bevacizumab treatment for radiation brain necrosis: mechanism, efficacy and issues. Molecular Cancer, 18 (1):21. [DOI:10.1186/s12943-019-0950-1] [PMID] []
12. Balentova S and Adamkov M (2015) Molecular, cellular and functional effects of radiation-induced brain injury: A review. International Journal of Molecular Sciences, 16(11): 27796-27815. [DOI:10.3390/ijms161126068] [PMID] []
13. Ye J, Rong X, Xiang Y, Xing Y, Tang Y (2012) A study of radiation-induced cerebral vascular injury in nasopharyngeal carcinoma patients with radiation-induced temporal lobe necrosis. PLOS One, 7(8): e42890. [DOI:10.1371/journal.pone.0042890] [PMID] []
14. Andrews RN, Metheny-Barlow LJ, Peiffer AM, Hanbury DB, Tooze JA, Bourland JD, et al. (2017) Cerebrovascular remodeling and neuroinflammation is a late effect of radiation-induced brain injury in non-human primates. Journal of Radiation Research, 187(5): 599-611. [DOI:10.1667/RR14616.1] [PMID] []
15. Peña LA, Fuks Z, Kolesnick RN (2000) Radiation-induced apoptosis of endothelial cells in the murine central nervous system: protection by fibroblast growth factor and sphingomyelinase deficiency. Cancer Research, 60(2): 321-327.
16. Brown WR, Blair RM, Moody DM, Thore CR, Ahmed S, Robbins ME, Wheeler KT (2007) Capillary loss precedes the cognitive impairment induced by fractionated whole-brain irradiation: apotential rat model of vascular dementia. Journal of Neurology Science, 257(1-2): 67-71. [DOI:10.1016/j.jns.2007.01.014] [PMID]
17. Yuan H, Gaber MW, McColgan T, Naimark MD, Kiani MF, Merchant TE (2003) Radiation-induced permeability and leukocyte adhesion in the rat blood-brain barrier: modulation with anti-ICAM-1 antibodies. Brain Research, 969(1-2): 59-69. [DOI:10.1016/S0006-8993(03)02278-9]
18. Brandsma D, Stalpers L, Taal W, Sminia P, van den Bent MJ (2008) Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncology, 9(5): 453-461. [DOI:10.1016/S1470-2045(08)70125-6]
19. Lewis CA, Manning J, Rossi F, Krieger C (2012) The Neuroinflammatory Response in ALS: The Roles of Microglia and T Cells. Neurology Research International, 2012: 803701. [DOI:10.1155/2012/803701] [PMID] []
20. Xue J, Dong JH, Huang GD, Qu XF, Wu G, Dong XR (2014) NF-κB signaling modulates radiationinduced microglial activation. Oncology Reports, 31(6): 2555-2560. [DOI:10.3892/or.2014.3144] [PMID]
21. Lee WH, Sonntag WE, Mitschelen M, Yan H, Lee YW (2010) Irradiation induces regionally specific alterations in pro-inflammatory environments in rat brain. International Journal of Radiation Biology, 86(2): 132-144. [DOI:10.3109/09553000903419346] [PMID] []
22. Gebicke-Haerter PJ (2001) Microglia in neurodegeneration: molecular aspects. Microscopy Research and Technique, 54(1): 47-58. [DOI:10.1002/jemt.1120] [PMID]
23. Spleiss O, Appel K, Boddeke HW, Berger M, Gebicke-Haerter PJ (1998) Molecular biology of microglia cytokine and chemokine receptors and microglial activation. Life Sciences, 62(17-18): 1707-1710. [DOI:10.1016/S0024-3205(98)00132-5]
24. O'Connor RA, Malpass KH, Anderton SM (2007) The inflamed central nervous system drives the activation and rapid proliferation of Foxp3+ regulatory T cells. Journal of Immunology, 179(2): 958-966. [DOI:10.4049/jimmunol.179.2.958] [PMID]
25. Zhang Z, Zhang ZY, Wu Y, Schluesener HJ (2012) Lesional accumulation of CD163+ macrophages/microglia in rat traumatic brain injury. Brain Research, 1461: 102-110. [DOI:10.1016/j.brainres.2012.04.038] [PMID]
26. Laman JD and Weller RO (2013) Drainage of cells and soluble antigen from the CNS to regional lymph nodes. Journal of Neuroimmune Pharmacology, 8(4): 840-856. [DOI:10.1007/s11481-013-9470-8] [PMID] []
27. Lumniczky K, Szatmári T, Sáfrány G (2017) Ionizing radiation-induced immune and inflammatory reactions in the brain. Frontiers in Immunology, 8: 517. [DOI:10.3389/fimmu.2017.00517] [PMID] []
28. McKelvey KJ, Hudson AL, Back M, Eade T, Diakos CI (2018) Radiation, inflammation and the immune response in cancer. Mammalian Genome, 29(11-12): 843-865. [DOI:10.1007/s00335-018-9777-0] [PMID] []
29. Sundgren PC, Cao Y (2009) Brain irradiation: effects on normal brain parenchyma and radiation injury. Neuroimaging Clinics of North America, 19(4): 657-668. [DOI:10.1016/j.nic.2009.08.014] [PMID] []
30. Zhang L, Pang L, Zhu S, Ma J, Li R, Liu Y, Zhu L, Zhuang X, et al. (2020) Intranasal tetrandrine temperature-sensitive in situ hydrogels for the treatment of microwave-induced brain injury. International Journal of Pharmaceutics, 583:119384. [DOI:10.1016/j.ijpharm.2020.119384] [PMID]
31. Chen W, Li R, Zhu S, Ma J, Pang L, Ma B, Du L, Jin Y (2020) Nasal timosaponin BII dually sensitive in situ hydrogels for the prevention of Alzheimer's disease induced by lipopolysaccharides. International Journal of Pharmaceutics, 578: 119115. [DOI:10.1016/j.ijpharm.2020.119115] [PMID]
32. Ma J, Wang C, Sun Y, Pang L, Zhu S, Liu Y, Zhu L, Zhang S, Wang L, Du L (2020) Comparative study of oral and intranasal puerarin for prevention of brain injury induced by acute high-altitude hypoxia. International Journal of Pharmaceutics, 591: 120002. [DOI:10.1016/j.ijpharm.2020.120002] [PMID]
33. Zhu S, Zhang S, Pang L, Ou G, Zhu L, Ma J, Li R, Liu Y, Wang L, Wang L, Du L, Jin Y (2021) Effects of armodafinil nanocrystal nasal hydrogel on recovery of cognitive function in sleep-deprived rats. International Journal of Pharmaceutics, 597: 120343. [DOI:10.1016/j.ijpharm.2021.120343] [PMID]
34. Anderson VA, Godber T, Smibert E, Weiskop S, Ekert H (2000) Cognitive and academic outcome following cranial irradiation and chemotherapy in children: a longitudinal study. British Journal of Cancer, 82(2): 255-262. [DOI:10.1054/bjoc.1999.0912] [PMID] []
35. Leyrer CM, Peiffer AM, Greene-Schloesser DM, Kearns WT, Hinson WH, et al. (2011) Normal tissue complication modeling of the brain: dose-volume histogram analysis of neurocognitive outcomes of two CCOP trials. International Journal of Radiation Oncology, Biology, Physics, 81: S184-S185. [DOI:10.1016/j.ijrobp.2011.06.329]
36. Riley PA (1994) Free radicals in biology: oxidative stress and the effects of ionizing radiation. International Journal of Radiation Biology, 65(1): 27-33. [DOI:10.1080/09553009414550041] [PMID]
37. Poon HF, Calabrese V, Calvani M, Butterfield DA (2006) Proteomics analyses of specific protein oxidation and protein expression in aged rat brain and its modulation by L-acetylcarnitine: insights into the mechanisms of action of this proposed therapeutic agent for CNS disorders associated with oxidative stress. Antioxid Redox Signal, 8(3-4): 381-394. [DOI:10.1089/ars.2006.8.381] [PMID]
38. Ji S, Wu H, Ding X, Chen Q, Jin X, Yu J, Yang M (2020) Increased hippocampal TrkA expression ameliorates cranial radiationinduced neurogenesis impairment and cognitive deficit via PI3K/AKT signaling. Oncology Reports, 44(6): 2527-2536. [DOI:10.3892/or.2020.7782] [PMID] []
39. Madsen TM, Kristjansen PE, Bolwig TG, Wörtwein G (2003) Arrested neuronal proliferation and impaired hippocampal function following fractionated brain irradiation in the adult rat. Neuroscience, 119(3): 635-642. [DOI:10.1016/S0306-4522(03)00199-4]
40. Xiao H, Liu B, Chen Y, Zhang J (2016) Learning, memory and synaptic plasticity in hippocampus in rats exposed to sevoflurane. International Journal of Developemental Neuroscience, 48: 38-49. [DOI:10.1016/j.ijdevneu.2015.11.001] [PMID]
41. Alkis ME, Bilgin HM, Akpolat V, Dasdag S, Yegin K, Yavas MC, Akdag MZ (2019) Effect of 900-, 1800-, and 2100-MHz radiofrequency radiation on DNA and oxidative stress in brain. Electromagnetic Biology and Medicine, 1-16. [DOI:10.1080/15368378.2019.1567526] [PMID]
42. Salvador E, Shityakov S, Förster C (2014) Glucocorticoids and endothelial cell barrier function. Cell Tissue Research, 355(3): 597-605. [DOI:10.1007/s00441-013-1762-z] [PMID] []
43. Straub RH, Cutolo M (2016) Glucocorticoids and chronic inflammation. Rheumatology (Oxford), 55(2): II6-II14. [DOI:10.1093/rheumatology/kew348] [PMID]
44. Ronchetti S, Migliorati G, Bruscoli S, Riccardi C (2018) Defining the role of glucocorticoids in inflammation. Clinical Science, 132(14): 1529-1543. [DOI:10.1042/CS20171505] [PMID]
45. Dixit KS, Kumthekar PU (2020) Optimal management of corticosteroids in patients with intracranial malignancies. Current treatment options in oncology, 21(9): 1-11. [DOI:10.1007/s11864-020-00771-7] [PMID]
46. Rhen T, Cidlowski JA (2005) Antiinflammatory action of glucocorticoids--new mechanisms for old drugs. N Engl J Med, 353(16): 1711-1723. [DOI:10.1056/NEJMra050541] [PMID]
47. Förster C, Silwedel C, Golenhofen N, Burek M, Kietz S, Mankertz J, Drenckhahn D (2005) Occludin as direct target for glucocorticoid-induced improvement of blood-brain barrier properties in a murine in vitro system. The Journal of Physiology, 565(Pt 2): 475-486. [DOI:10.1113/jphysiol.2005.084038] [PMID] []
48. Förster C, Waschke J, Burek M, Leers J, Drenckhahn D (2006) Glucocorticoid effects on mouse microvascular endothelial barrier permeability are brain specific. The Journal of Physiology, 573(Pt 2): 413-425. [DOI:10.1113/jphysiol.2006.106385] [PMID] []
49. Lam TC, Wong FC, Leung TW, Ng SH, Tung SY (2012) Clinical outcomes of 174 nasopharyngeal carcinoma patients with radiation-induced temporal lobe necrosis. International of Journal Radiation Oncology, Biology, Physics, 82(1): e57-e65. [DOI:10.1016/j.ijrobp.2010.11.070] [PMID]
50. Matuschek C, Bolke E, Nawatny J, Hoffmann TK, Peiper M, Orth K, Gerber PA, Rusnak E, Lammering G, Budach W (2011) Bevacizumab as a treatment option for radiation-induced cerebral necrosis. Strahlentherapie und Onkologie, 187(2): 135-139. [DOI:10.1007/s00066-010-2184-4] [PMID]
51. Alessandretti M, Buzaid AC, Brandao R, Brandao EP (2013) Low-dose bevacizumab is effective in radiation-induced necrosis. Case Reports in Oncological Medicine, 6(3): 598-601. [DOI:10.1159/000357401] [PMID] []
52. Nonoguchi N, Miyatake S, Fukumoto M, Furuse M, Hiramatsu R, Kawabata S, et al. (2011) The distribution of vascular endothelial growth factor-producing cells in clinical radiation necrosis of the brain: pathological consideration of their potential roles. Journal of Neuro-oncology, 105(2): 423-431. [DOI:10.1007/s11060-011-0610-9] [PMID]
53. Wang Y, Fei D, Vanderlaan M, Song A (2004) Biological activity of bevacizumab, a humanized anti-VEGF antibody in vitro. Angiogenesis, 7(4): 335-345. [DOI:10.1007/s10456-004-8272-2] [PMID]
54. Benoit A, Ducray F, Cartalat-Carel S, Psimaras D, Ricard D, Honnorat J (2011) Favorable outcome with bevacizumab after poor outcome with steroids in a patient with temporal lobe and brainstem radiation necrosis. Journal of Neurology, 258(2): 328-329. [DOI:10.1007/s00415-010-5747-5] [PMID]
55. Yonezawa S, Miwa K, Shinoda J, Nomura Y, Asano Y, Nakayama N, et al. (2014) Bevacizumab treatment leads to observable morphological and metabolic changes in brain radiation necrosis. Journal of Neuro-oncology, 119(1): 101-109. [DOI:10.1007/s11060-014-1453-y] [PMID]
56. Sadraei NH, Dahiya S, Chao ST, Murphy ES, Osei-Boateng K, Xie H, Suh JH, et al. (2015) Treatment of cerebral radiation necrosis with bevacizumab: the Cleveland clinic experience. American Journal of Clinical Oncology, 38(3): 304-310. [DOI:10.1097/COC.0b013e31829c3139] [PMID]
57. Wang Y, Pan L, Sheng X, Mao Y, Yao Y, Wang E, Zhang N, Dai J (2012) Reversal of cerebral radiation necrosis with bevacizumab treatment in 17 Chinese patients. European Journal of Medicine Research, 17(1): 25. [DOI:10.1186/2047-783X-17-25] [PMID] []
58. Zhang F, Yuan T, Gao M (2019) Efficacy of chemoradiotherapy combined with bevacizumab in patients with nasopharyngeal carcinoma: A comparative study. Journal of BUON, 24(3):1252-1258.
59. Bailly C (2019) Potential use of edaravone to reduce specific side effects of chemo-, radio- and immuno-therapy of cancers. International Immunopharmacology, 77: 105967. [DOI:10.1016/j.intimp.2019.105967] [PMID]
60. Shakkour Z, Issa H, Ismail H, Ashekyan O, Habashy KJ, Nasrallah L, Jourdi H, et al. (2021) Drug repurposing: Promises of edaravone target drug in traumatic brain injury. Current medicinal chemistry, 28(12): 2369-2391. https://doi.org/10.2174/1875533XMTA5tMDc5w [DOI:10.2174/0929867327666200812221022]
61. Tang Y, Rong X, Hu W, Li G, Yang X, Yang J, Xu P, Luo J (2014) Effect of edaravone on radiation-induced brain necrosis in patients with nasopharyngeal carcinoma after radiotherapy: a randomized controlled trial. Journal of Neuro-oncology, 120(2): 441-447. [DOI:10.1007/s11060-014-1573-4] [PMID] []
62. Joseph JA (1992) The putative role of free radicals in the loss of neuronal functioning in senescence. Integrative Physiological Behavioral Science, 27(3): 216-227. [DOI:10.1007/BF02690894] [PMID]
63. Ishii J, Natsume A, Wakabayashi T, Takeuchi H, Hasegawa H, Kim SU, Yoshida J (2007) The free-radical scavenger edaravone restores the differentiation of human neural precursor cells after radiation-induced oxidative stress. Neuroscience Letters, 423(3): 225-230. [DOI:10.1016/j.neulet.2007.07.029] [PMID]
64. Ferrer MD, Busquets-Cortés C, Capó X, Tejada S, Tur JA, Pons A, Sureda A (2019) Cyclooxygenase-2 inhibitors as a therapeutic target in inflammatory diseases. Current medicinal chemistry, 26(18): 3225-3241. [DOI:10.2174/0929867325666180514112124] [PMID]
65. López DE and Ballaz SJ (2020) The role of brain cyclooxygenase-2 (Cox-2) beyond neuroinflammation: Neuronal homeostasis in memory and anxiety. Molecular Neurobiology, 57(12): 5167-5176. [DOI:10.1007/s12035-020-02087-x] [PMID]
66. Moore AH, Olschowka JA, Williams JP, Paige SL, O'Banion MK (2004) Radiation-induced edema is dependent on cyclooxygenase 2 activity in mouse brain. Radiation Research, 161(2): 153-160. [DOI:10.1667/RR3116] [PMID]
67. Han L and Ren Q (2014) Protective effect of meloxicam against acute radiation-induced brain injury in rats. Chinese Journal of Cellular and Molecular Immunology, 30(4): 375-378.
68. Desmarais G, Charest G, Fortin D, Bujold R, Mathieu D, Paquette B (2015) Cyclooxygenase-2 inhibitor prevents radiation-enhanced infiltration of F98 glioma cells in brain of Fischer rat. International Journal of Radiation Biology, 91(8): 624-633. [DOI:10.3109/09553002.2015.1043756] [PMID]
69. Jendrossek V (2013) Targeting apoptosis pathways by celecoxib in cancer. Cancer Letters, 332(2): 313-324. [DOI:10.1016/j.canlet.2011.01.012] [PMID]
70. Wang BF, Cui ZW, Zhong ZH, Sun YH, Sun QF, Yang GY, Bian LG (2015) Curcumin attenuates brain edema in mice with intracerebral hemorrhage through inhibition of AQP4 and AQP9 expression. Acta Pharmacologica Sinica, 36(8): 939-948. [DOI:10.1038/aps.2015.47] [PMID] []
71. Kim SJ, Son TG, Park HR, Park M, Kim MS, Kim HS, Chung HY, Mattson MP, Lee J (2008) Curcumin stimulates proliferation of embryonic neural progenitor cells and neurogenesis in the adult hippocampus. The Journal of Biological Chemistry, 283(21): 14497-14505. [DOI:10.1074/jbc.M708373200] [PMID] []
72. Ding Y, Ren D, Xu H, Liu W, Liu T, Li L, Li J, Li Y, Wen A (2017) Antioxidant and pro-angiogenic effects of corilagin in rat cerebral ischemia via Nrf2 activation. Oncotarget, 8(70): 4816-4828. [DOI:10.18632/oncotarget.22023] [PMID] []
73. Tong F, Zhang J, Liu L, Gao X, Cai Q, Wei C, Dong J, Hu Y, Wu G, Dong X (2016) Corilagin attenuates radiation-induced brain injury in mice. Molecular Neurobiology, 53(10): 6982-6996. [DOI:10.1007/s12035-015-9591-6] [PMID]
74. Youn K, Lee S, Jeong WS, Ho CT, Jun M (2016) Protective role of corilagin on Aβ 25-35-induced neurotoxicity: Suppression of NF-κB signaling pathway. Journal of Medicinal Food, 19(10): 901-911. [DOI:10.1089/jmf.2016.3714] [PMID]
75. Thabet NM and Moustafa EM (2017) Protective effect of rutin against brain injury induced by acrylamide or gamma radiation: role of PI3K/AKT/GSK-3β/NRF-2 signalling pathway. Archives of Physiology and Biochemistry, 124(2): 185-193. [DOI:10.1080/13813455.2017.1374978] [PMID]
76. Xu D, Hu MJ, Wang YQ, Cui YL (2019) Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application. Molecules, 24(6): 1123. [DOI:10.3390/molecules24061123] [PMID] []
77. Zhang Y, Cheng Z, Wang C, Ma H, Meng W, Zhao Q (2016) Neuroprotective effects of kukoamine A against radiation-induced rat brain injury through inhibition of oxidative stress and neuronal apoptosis. Neurochemical Research, 41(10): 2549-2558. [DOI:10.1007/s11064-016-1967-0] [PMID]
78. Zhang Y, Gao L, Cheng Z, Cai J, Niu Y, Meng W, Zhao Q (2017) Kukoamine A prevents radiation-induced neuroinflammation and preserves hippocampal neurogenesis in rats by inhibiting activation of NF-κB and AP-1. Neurotoxicity Research, 31(2): 259-268. [DOI:10.1007/s12640-016-9679-4] [PMID]
79. Shehzad A, Rehman G, Lee YS (2013) Curcumin in inflammatory diseases. Biofactors, 39(1): 69-77. [DOI:10.1002/biof.1066] [PMID]
80. Chiang IT, Liu YC, Hsu FT, Chien YC, Kao CH, Lin WJ, Chung JG, Hwang JJ (2014) Curcumin synergistically enhances the radiosensitivity of human oral squamous cell carcinoma via suppression of radiation-induced NF-kappaB activity. Oncology Reports, 31(4): 1729-1737. [DOI:10.3892/or.2014.3009] [PMID]
81. Hu N, Shi Y, Cheng X, Zhang Q, Shang H, Wang A, Li L, Liu Y (2018) Protective effect of cucurmin on behavior and blood brain barrier in rat model of radiation injured brain. The Journal of Practical Medicine, 34(10): 1628-1632.
82. Kale A, Piskin O, Bas Y, Aydin BG, Can M, Elmas O, Buyukuysal C (2018) Neuroprotective effects of quercetin on radiation-induced brain injury in rats. Journal of Radiation Research, 59(4): 404-410. [DOI:10.1093/jrr/rry032] [PMID] []
83. Chatterjee J, Langhnoja J, Pillai PP, Mustak MS (2019) Neuroprotective effect of quercetin against radiation-induced endoplasmic reticulum stress in neurons. Journal of Biochemical and Molecular Toxicology, 33(2): e22242. [DOI:10.1002/jbt.22242] [PMID]
84. Shadman J, Sadeghian N, Moradi A, Bohlooli S, Panahpour H (2019) Magnesium sulfate protects blood-brain barrier integrity and reduces brain edema after acute ischemic stroke in rats. Metabolic Brain Disease, 34(4):1221-1229. [DOI:10.1007/s11011-019-00419-y] [PMID]
85. Khalilzadeh M, Abdollahi A, Abdolahi F, Abdolghaffari AH, Dehpour AR, Jazaeri F (2018) Protective effects of magnesium sulfate against doxorubicin induced cardiotoxicity in rats. Life Sciences, 207: 436-441. [DOI:10.1016/j.lfs.2018.06.022] [PMID]
86. Liao G, Li R, Chen X, Zhang W, Du S, Yuan Y (2016) Sodium valproate prevents radiation-induced injury in hippocampal neurons via activation of the Nrf2/HO-1 pathway. Neuroscience, 331: 40-51. [DOI:10.1016/j.neuroscience.2016.06.019] [PMID]
87. Thotala D, Karvas RM, Engelbach JA, Garbow JR, Hallahan AN, DeWees TA, et al. (2015) Valproic acid enhances the efficacy of radiation therapy by protecting normal hippocampal neurons and sensitizing malignant glioblastoma cells. Oncotarget, 6(33): 3504-3522. [DOI:10.18632/oncotarget.5253] [PMID] []
88. Colón JM, Miranda JD (2016) Tamoxifen: an FDA approved drug with neuroprotective effects for spinal cord injury recovery. Neural Regeneration Research, 11(8): 1208-1211. [DOI:10.4103/1673-5374.189164] [PMID] []
89. Liu JL, Tian DS, Li ZW, Qu WS, Zhan Y, Xie MJ, Yu ZY, Wang W, Wu G (2010) Tamoxifen alleviates irradiation-induced brain injury by attenuating microglial inflammatory response in vitro and in-vivo. Brain Research, 1316: 101-111. [DOI:10.1016/j.brainres.2009.12.055] [PMID]
90. Zhang J, Tong F, Cai Q, Chen LJ, Dong JH, Wu G, Dong XR (2015) Shenqi fuzheng injection attenuates irradiation-induced brain injury in mice via inhibition of the NF-κB signaling pathway and microglial activation. Acta Pharmacologica Sinica, 36(11): 1288-1299. [DOI:10.1038/aps.2015.69] [PMID] []
91. Chen LJ, Zhang RG, Yu DD, Wu G, Dong XR (2019) Shenqi Fuzheng injection ameliorates radiation-induced brain injury. Current Medcine Science, 39(6): 965-971. [DOI:10.1007/s11596-019-2129-9] [PMID]
92. Dong X, Dong J, Zhang R, Fan L, Liu L, Wu G (2009) Anti-inflammatory erffects of tanshinone IIA on radiation-induced microglia BV-2 cells inflammatory response. Cancer Biother Radiopharm, 24(6) :681-687. [DOI:10.1089/cbr.2009.0640] [PMID]
93. Huang L, Zhao H, Huang B, Zheng C, Peng W, Qin L (2011) Acanthopanax senticosus: review of botany, chemistry and pharmacology. Die Pharmazie, 66(2): 83-97.
94. Zhou AY, Song BW, Fu CY, Baranenko DD, Wang EJ, Li FY, Lu GW (2018) Acanthopanax senticosus reduces brain injury in mice exposed to low linear energy transfer radiation. Biomedicine & Pharmacotherapy, 99: 781-790. [DOI:10.1016/j.biopha.2018.01.001] [PMID]
95. Zhou Y, Cheng C, Baranenko D, Wang J, Li Y, Lu W (2018) Effects of Acanthopanax senticosus on brain injury induced by simulated spatial radiation in mouse model based on pharmacokinetics and comparative proteomics. International Journal of Molecular Science, 19(1): 159. [DOI:10.3390/ijms19010159] [PMID] []
96. Mayer R, Hamilton-Farrell MR, van der Kleij AJ, Schmutz J, Granstrom G, et al. (2005) Hyperbaric oxygen and radiotherapy. Strahlentherapie und Onkologie, 181(2): 113-123. [DOI:10.1007/s00066-005-1277-y] [PMID]
97. Pasquier D, Hoelscher T, Schmutz J, Dische S, Mathieu D, Baumann M, Lartigau E (2004) Hyperbaric oxygen therapy in the treatment of radio-induced lesions in normal tissues: a literature review. Radiotherapy and Oncology, 72(1): 1-13. [DOI:10.1016/j.radonc.2004.04.005] [PMID]
98. Williamson RA (2007) An experimental study of the use of hyperbaric oxygen to reduce the side effects of radiation treatment for malignant disease. International of Journal Oral and Maxillofac Surgery, 36(6): 533-540. [DOI:10.1016/j.ijom.2007.03.003] [PMID]
99. Bennett MH, Feldmeier J, Hampson N, Smee R, Milross C (2012) Hyperbaric oxygen therapy for late radiation tissue injury. The Cochrane Database Systermatic Reviews (5): CD005005. [DOI:10.1002/14651858.CD005005.pub3] [PMID]
100. Bennett MH, Feldmeier J, Smee R, Milross C (2012) Hyperbaric oxygenation for tumour sensitisation to radiotherapy. The Cochrane Database Systermatic Reviews (4): CD005007. [DOI:10.1002/14651858.CD005007.pub3] [PMID] []
101. Al-Waili NS, Butler GJ, Beale J, Hamilton RW, Lee BY, Lucas P (2005) Hyperbaric oxygen and malignancies: a potential role in radiotherapy, chemotherapy, tumor surgery and phototherapy. Medicne Science Monitor, 11(9): Ra279-Ra289.
102. Cade IS, McEwen JB (1978) Clinical trials of radiotherapy in hyperbaric oxygen at Portsmouth, 1964--1976. Clinical Radiology, 29(3): 333-338. [DOI:10.1016/S0009-9260(78)80081-6] [PMID]
103. Watson ER, Halnan KE, Dische S, Saunders MI, Cade IS, McEwen JB, Wiernik G, et al. (1978) Hyperbaric oxygen and radiotherapy: a Medical Research Council trial in carcinoma of the cervix. The British Journal of Radiology, 51(611): 879-887. [DOI:10.1259/0007-1285-51-611-879] [PMID]
104. Feldmeier JJ and Hampson NB (2002) A systematic review of the literature reporting the application of hyperbaric oxygen prevention and treatment of delayed radiation injuries: an evidence based approach. Undersea & Hyperbaric Medicine, 29(1): 4-30.
105. Chuba PJ, Aronin P, Bhambhani K, Eichenhorn M, Zamarano L, Cianci P, et al. (1997) Hyperbaric oxygen therapy for radiation-induced brain injury in children. Cancer, 80(10): 2005-2012. https://doi.org/10.1002/(SICI)1097-0142(19971115)80:10<2005::AID-CNCR19>3.0.CO;2-0 [DOI:10.1002/(SICI)1097-0142(19971115)80:103.0.CO;2-0]
106. Wanebo JE, Kidd GA, King MC, Chung TS (2009) Hyperbaric oxygen therapy for treatment of adverse radiation effects after stereotactic radiosurgery of arteriovenous malformations: case report and review of literature. Surgical Neurology, 72(2): 162-168. [DOI:10.1016/j.surneu.2008.03.037] [PMID]
107. Cihan YB, Uzun G, Yildiz S, Dönmez H (2009) Hyperbaric oxygen therapy for radiation-induced brain necrosis in a patient with primary central nervous system lymphoma. Journal of Surgical Oncology, 100(8): 732-735. [DOI:10.1002/jso.21387] [PMID]
108. Kohshi K, Imada H, Nomoto S, Yamaguchi R, Abe H, Yamamoto H (2003) Successful treatment of radiation-induced brain necrosis by hyperbaric oxygen therapy. Journal of Neurological Sciences, 209(1-2): 115-117. [DOI:10.1016/S0022-510X(03)00007-8]
109. Co J, De Moraes MV, Katznelson R, Evans AW, Shultz D, Laperriere N, et al. (2019) Hyperbaric Oxygen for Radiation Necrosis of the Brain. The Canidian Journal of Neurological Sciences, volume (47): 92-99. [DOI:10.1017/cjn.2019.290] [PMID]
110. Ohguri T, Imada H, Kohshi K, Kakeda S, Ohnari N, Morioka T, Nakano K, Konda N, Korogi Y (2007) Effect of prophylactic hyperbaric oxygen treatment for radiation-induced brain injury after stereotactic radiosurgery of brain metastases. Int J Radiat Oncol Biol Phys, 67(1): 248-255. [DOI:10.1016/j.ijrobp.2006.08.009] [PMID]
111. Xing S, Fan Z, Shi L, Yang Z, Bai Y (2019) Successful treatment of brain radiation necrosis resulting from triple-negative breast cancer with Endostar and short-term hyperbaric oxygen therapy: A case report. Onco Targets and Therapy, 12: 2729-2735. [DOI:10.2147/OTT.S190409] [PMID] []
112. Liao H, Wang H, Rong X, Li E, Xu R-H, Peng Y (2017) Mesenchymal stem cells attenuate radiation-induced brain injury by inhibiting microglia pyroptosis. Biomed Research International, 2017: 1948985. [DOI:10.1155/2017/1948985] [PMID] []
113. Wang G, Liu Y, Wu X, Lu Y, Liu J, Qin Y, Li T, Duan H (2016) Neuroprotective effects of human umbilical cord-derived mesenchymal stromal cells combined with nimodipine against radiation-induced brain injury through inhibition of apoptosis. Cytotherapy, 18(1): 53-64. [DOI:10.1016/j.jcyt.2015.10.006] [PMID]
114. Smith SM, Limoli CL (2017) Stem cell therapies for the resolution of radiation injury to the brain. Current stem Cell Reports, 3(4): 342-347. [DOI:10.1007/s40778-017-0105-5] [PMID] []
115. Spurlock MS, Ahmed AI, Rivera KN, Yokobori S, Lee SW, Sam PN, Shear DA, Hefferan MP, Hazel TG, Johe KK, Gajavelli S, Tortella FC, Bullock RM (2017) Amelioration of Penetrating Ballistic-Like Brain Injury Induced Cognitive Deficits after Neuronal Differentiation of Transplanted Human Neural Stem Cells. Journal of Neurotrauma, 34(11): 1981-1995. [DOI:10.1089/neu.2016.4602] [PMID] []
116. Acharya MM, Christie LA, Hazel TG, Johe KK, Limoli CL (2014) Transplantation of human fetal-derived neural stem cells improves cognitive function following cranial irradiation. Cell Transplant, 23(10): 1255-1266. [DOI:10.3727/096368913X670200] [PMID] []
117. Leavitt RJ, Limoli CL, Baulch JE (2019) miRNA-based therapeutic potential of stem cell-derived extracellular vesicles: a safe cell-free treatment to ameliorate radiation-induced brain injury. International Journal of Radiation Biology, 95(4): 427-435. [DOI:10.1080/09553002.2018.1522012] [PMID] []
118. Li Y, Huang X, Jiang J, Hu W, Hu J, Cai J, Rong X, Cheng J, Xu Y, Wu R, Luo J, Tang Y (2018) Clinical Variables for Prediction of the Therapeutic Effects of Bevacizumab Monotherapy in Nasopharyngeal Carcinoma Patients With Radiation-Induced Brain Necrosis. Int J Radiat Oncol Biol Phys, 100(3): 621-629. [DOI:10.1016/j.ijrobp.2017.11.023] [PMID]
119. Na A, Haghigi N, Drummond KJ (2014) Cerebral radiation necrosis. Asia-Pacific Journal of Clinical Oncology, 10(1): 11-21. [DOI:10.1111/ajco.12124] [PMID]
120. Smart D (2017) Radiation Toxicity in the Central Nervous System: Mechanisms and Strategies for Injury Reduction. Seminars in Radiation Oncology, 27(4): 332-339. [DOI:10.1016/j.semradonc.2017.04.006] [PMID] []
121. Chan YL, Leung SF, King AD, Choi PH, Metreweli C (1999) Late radiation injury to the temporal lobes: morphologic evaluation at MR imaging. Radiology, 213(3): 800-807. [DOI:10.1148/radiology.213.3.r99dc07800] [PMID]
122. Kennedy AS, Archambeau JO, Archambeau MH, Holshouser B, Thompson J, et al. (1995) Magnetic resonance imaging as a monitor of changes in the irradiated rat brain. An aid in determining the time course of events in a histologic study. Investigative Radiology, 30(4): 214-220. [DOI:10.1097/00004424-199504000-00003] [PMID]
123. Rabinov JD, Brisman JL, Cole AJ, Lee PL, Bussiere MR, Chapman PH, et al. (2004) MRI changes in the rat hippocampus following proton radiosurgery. Stereotactic Functional Neurosurgery, 82(4): 156-164. [DOI:10.1159/000081639] [PMID]
124. Xiong WF, Qiu SJ, Wang HZ, Lv XF (2013) 1H-MR spectroscopy and diffusion tensor imaging of normal-appearing temporal white matter in patients with nasopharyngeal carcinoma after irradiation: initial experience. Journal of Magnetic Resonance Imaging: JMRI, 37(1): 101-108. [DOI:10.1002/jmri.23788] [PMID]
125. Chapman CH, Nagesh V, Sundgren PC, Buchtel H, Chenevert TL, Junck L, et al. (2012) Diffusion tensor imaging of normal-appearing white matter as biomarker for radiation-induced late delayed cognitive decline. International Journal of Radiation Oncololy, Biology, Physics, 82(5): 2033-2040. [DOI:10.1016/j.ijrobp.2011.01.068] [PMID] []
126. Chan YL, Yeung DK, Leung SF, Chan PN (2003) Diffusion-weighted magnetic resonance imaging in radiation-induced cerebral necrosis. Apparent diffusion coefficient in lesion components. Journal of Computer Assisted Tomography, 27(5): 674-680. [DOI:10.1097/00004728-200309000-00003] [PMID]
127. Wang HZ, Qiu SJ, Lv XF, Wang YY, Liang Y, Xiong WF, Ouyang ZB (2012) Diffusion tensor imaging and 1H-MRS study on radiation-induced brain injury after nasopharyngeal carcinoma radiotherapy. Clinical Radiology, 67(4): 340-345. [DOI:10.1016/j.crad.2011.09.008] [PMID]
128. Yang L, Yang J, Li G, Li Y, Wu R, Cheng J, Tang Y (2017) Pathophysiological responses in rat and mouse models of radiation-induced brain injury. Molecular Neurobiology, 54(2): 1022-1032. [DOI:10.1007/s12035-015-9628-x] [PMID] []
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zhang Y, Ou G, Li Q, Ma S, Du L. Treatment strategies for radiation-induced brain injury. Int J Radiat Res 2022; 20 (4) :727-736
URL: http://ijrr.com/article-1-4457-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 20, Issue 4 (10-2022) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 50 queries by YEKTAWEB 4657