[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
IJRR Information::
For Authors::
For Reviewers::
News & Events::
Web Mail::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
Hard Copy 2322-3243
Online 2345-4229
Online Submission
Now you can send your articles to IJRR office using the article submission system.



:: Volume 20, Issue 4 (10-2022) ::
Int J Radiat Res 2022, 20(4): 799-806 Back to browse issues page
Impact of cherry juice on oxidative stress and fertility impairment in aged irradiated rats
H.A. Fahmy , A.M. Hawas , M.A. Mohamed
Drug Radiation Research Department, National Centre for Radiation Research and Technology, Egyptain Atomic Energy Authority, Cairo, Egypt , fahmy.hanan@yahoo.com
Abstract:   (1191 Views)
Background: This study targeted to conclude the effect of cherry juice and fractionated dose γ-irradiation on the fertility of elderly rats. Materials and Methods: Male and female rats were assigned to five groups: young adult control, old adult control, old adult irradiated using 137Cs, source (0.3 Gy*3), old adult cherry juice and cherry irradiated group. Cherry juice was administered orally at the dose 5ml/kg b.w. Follicle stimulating hormone (FSH), estradiol (E2), 8-hydroxy-2-deoxyguanosine (8-OHdG), and insulin-Like Growth Factor 1 (IGF-1) were estimated in the serum of female rats. Serum testosterone (T), FSH, and testicular steroidogenic acute regulatory (STAR) gene expression were evaluated in male rats. Metallothionine (MT), malondialdehyde (MDA) and glutathione (GSH) were estimated in the uterus and testes. Results: Co-treatments of old adult male and female rats with cherry juice and fractionated doses of γ-irradiation developed a significant decrease in MDA in uterus and testes, parallel with an increase in the level of uterus MT and testes GSH as compared with young rats. A significant increase in the levels of female E2, IGF-1, and male T along with a decrease in FSH in both sexes was observed. Additionally, STAR gene expression in male was up regulated. Conclusion: Fractionated dose of gamma radiation (0.3 Gy*3) has no effect on tested reproductive hormones, while Cherry juice stimulates the secretion of E2, and T, and elevates GSH. Tart cherry juice can improve reproductive ability, especially for those undergoing radiotherapy Thus, cherry juice may be a potential candidate to ameliorate the effect of aging on reproductive ability.
Keywords: radioactive Aging rats, STAR, testosterone, estrogen, γ-irradiation.
Full-Text [PDF 1980 kb]   (1261 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
1. Shigenaga MK, Hagen TM, Ames BN (1994) Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci USA, 91(23): 10771-8. [DOI:10.1073/pnas.91.23.10771] [PMID] []
2. Chistiakov DA, Sobenin IA, Revin VV, Orekhov AN, Bobryshev YV (2014) Mitochondrial aging and age-related dysfunction of mitochondria. Biomed Research International, 2014: 238463. [DOI:10.1155/2014/238463] [PMID] []
3. Shirasuna K and Iwata H (2017) Effect of aging on the female reproductive function. Contracept Reprod Med, 2: 23. [DOI:10.1186/s40834-017-0050-9] [PMID] []
4. Nelson LM (2009) Clinical practice. Primary ovarian insufficiency. N Engl J Med, 360(6): 606-14. [DOI:10.1056/NEJMcp0808697] [PMID] []
5. Mohr BA, Guay AT, O'Donnell AB, McKinlay JB (2005) Normal, bound and nonbound testosterone levels in normally ageing men: results from the Massachusetts Male Ageing Study. Clinical Endocrinology, 62(1): 64-73. [DOI:10.1111/j.1365-2265.2004.02174.x] [PMID]
6. Basaria S (2013) Reproductive aging in men. Endocrinology and Metabolism Clinics of North America, 42(2): 255-70. [DOI:10.1016/j.ecl.2013.02.012] [PMID]
7. Ferrucci L and Studenski S (2012) Chapter 72. Clinical Problems of Aging...
8. Lodovici M, Luceri C, De Filippo C, Romualdi C, Bambi F, Dolara P (2007) Smokers and passive smokers gene expression profiles: correlation with the DNA oxidation damage. Free Radical Biology & Medicine, 43(3):415-22. [DOI:10.1016/j.freeradbiomed.2007.04.018] [PMID]
9. Holmquist GP (1998) Endogenous lesions, S-phase-independent spontaneous mutations, and evolutionary strategies for base excision repair. Mutation Research, 400(1-2): 59-68. [DOI:10.1016/S0027-5107(98)00051-7]
10. Cabelof DC, Raffoul JJ, Yanamadala S, Ganir C, Guo Z, Heydari AR (2002) Attenuation of DNA polymerase beta-dependent base excision repair and increased DMS-induced mutagenicity in aged mice. Mutation Research, 500(1-2): 135-45. [DOI:10.1016/S0027-5107(02)00003-9]
11. Luckey TD (2006) Radiation hormesis: the good, the bad, and the ugly. Dose Respons, 4(3):169-90. [DOI:10.2203/dose-response.06-102.Luckey] [PMID] []
12. Ishizuka M, Fujimoto Y, Itoh Y, Kitagawa K, Sano M, Miyagawa Y, et al. (2011) Relationship between hematotoxicity and serum albumin level in the treatment of head and neck cancers with concurrent chemoradiotherapy using cisplatin. Japanese Journal of Clinical Oncology, 41(8):973-9. [DOI:10.1093/jjco/hyr076] [PMID]
13. Nogami M, Huang JT, James SJ, Lubinski JM, Nakamura LT, Makinodan T (1993) Mice Chronically Exposed to Low Dose Ionizing Radiation Possess Splenocytes with Elevated Levels of HSP70 mRNA, HSC70 and HSP72 and with an Increased Capacity to Proliferate. Int J Radiation Biology, 63(6):775-83. [DOI:10.1080/09553009314552181] [PMID]
14. Feinendegen LE (2005) Evidence for beneficial low level radiation effects and radiation hormesis. The British Journal of Radiology, 78(925): 3-7. [DOI:10.1259/bjr/63353075] [PMID]
15. Huang C-S, Qiu L-Z, Yue L, Wang N-N, Liu H, Deng H-F, et al. (2022) Low-dose radiation-induced demethylation of 3β-HSD participated in the regulation of testosterone content. Journal of Applied Toxicology, 42(3): 529-539. [DOI:10.1002/jat.4237] [PMID]
16. Azzini E, Vitaglione P, Intorre F, Napolitano A, Durazzo A, Foddai MS, et al. (2010) Bioavailability of strawberry antioxidants in human subjects. The British Journal of Nutrition, 104(8):1165-73. [DOI:10.1017/S000711451000187X] [PMID]
17. Pojer E, Mattivi F, Johnson D, Stockley CS (2013) The Case for Anthocyanin Consumption to Promote Human Health: A Review. Comprehensive Reviews [DOI:10.1111/1541-4337.12024] [PMID]
18. in Food Science and Food Safety, 12(5): 483-508.
19. Coelho Rabello Lima L, Oliveira Assumpção C, Prestes J, Sérgio Denadai B (2015) Consumption of cherries as a strategy to attenuate exercise-induced muscle damage and inflammation in humans. Nutricion Hospitalaria, 32(5): 1885-93.
20. Kang SY, Seeram NP, Nair MG, Bourquin LD (2003) Tart cherry anthocyanins inhibit tumor development in Apc(Min) mice and reduce proliferation of human colon cancer cells. Cancer letters, 194(1): 13-9. https://doi.org/10.1016/S0304-3835(02)00583-9 [DOI:10.1016/S0304-3940(02)00583-9]
22. Tall JM, Seeram NP, Zhao C, Nair MG, Meyer RA, Raja SN (2004) Tart cherry anthocyanins suppress inflammation-induced pain behavior in rat. Behavioural Brain Research, 153(1): 181-8. [DOI:10.1016/j.bbr.2003.11.011] [PMID]
23. Jang H, Kim SJ, Yuk SM, Han DS, Ha US, Hong SH, et al. (2012) Effects of anthocyanin extracted from black soybean seed coat on spermatogenesis in a rat varicocele-induced model. Reproduction, Fertility, and Development, 24(5):649-55. [DOI:10.1071/RD11174] [PMID]
24. Jang H, Bae WJ, Kim SJ, Yuk SM, Han DS, Ha US, et al. (2013) The effect of anthocyanin on the prostate in an andropause animal model: rapid prostatic cell death by apoptosis is partially prevented by anthocyanin supplementation. World J Mens Health, 31(3):239-46. [DOI:10.5534/wjmh.2013.31.3.239] [PMID] []
25. Utami S, Ratnawati R, Wiyasa I (2018) Effect of purple variety sweet potato (ipomoea batatas l.) anthocyanin on expression of estrogen receptor0' and endometrium thickness on uterus of female white rats (rattus norvegicus) exposed to cigarette smoke. Iranian Journal of Pharmaceutical Sciences, 14: 51-64.
26. Thangthaeng N, Poulose SM, Gomes SM, Miller MG, Bielinski DF, Shukitt-Hale B (2016) Tart cherry supplementation improves working memory, hippocampal inflammation, and autophagy in aged rats. Age (Dordr), 38(5-6):393-404. [DOI:10.1007/s11357-016-9945-7] [PMID] []
27. Düsman E, Almeida IV, Tonin LT, Vicentini VE (2016) In-vivo antimutagenic effects of the Barbados cherry fruit (Malpighia glabra Linnaeus) in a chromosomal aberration assay. Genetics and Molecular Research, GMR, 5(4). [DOI:10.4238/gmr15049036] [PMID]
28. Haidari F, Jr., Mohammad Shahi M, Keshavarz SA, Rashidi MR (2009) Inhibitory effects of tart cherry (prunus cerasus) juice on xanthine oxidoreductase activity and its hypouricemic and antioxidant effects on rats. Malaysian Journal of Nutrition, 15(1):53-64.
29. Flecknell PA(1993) Anaesthesia of animals for biomedical research. British Journal of Anaesthesia, 71(6): 885-94. [DOI:10.1093/bja/71.6.885] [PMID]
30. Scheuhammer AM, Cherian MG. 1986Quantification of metallothioneins by a silver-saturation method. Toxicology and applied pharmacology, 82(3):417-25. [DOI:10.1016/0041-008X(86)90277-2] [PMID]
31. Bienengräber M, Forderkunz S, Klein D, Summer KH (1995) Determination of Cu-containing metallothionein: comparison of Ag saturation assay, thiomolybdate assay, and enzyme-linked immunosorbent assay. Analytical Biochemistry, 228(1):69-73. [DOI:10.1006/abio.1995.1316] [PMID]
32. Yoshioka T, Kawada K, Shimada T, Mori M (1979) Lipid peroxidation in maternal and cord blood and protective mechanism against activated-oxygen toxicity in the blood. American Journal of Obstetrics and Gynecology, 135(3):372-6. [DOI:10.1016/0002-9378(79)90708-7]
33. Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. The Journal of Laboratory and Clinical Medicine, 61: 882-8.
34. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res, 29(9):e45-e. [DOI:10.1093/nar/29.9.e45] [PMID] []
35. Bancroft JD and Stevens A (1996) Theory and Practice of Histological Techniques, 1996.
36. Akasofu KMS (1993) Menopause and endoclinological changes. Journal of Medical Technology, 37: 349-54.
37. Harman SM, Metter EJ, Tobin JD, Pearson J, Blackman MR (2001) Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore Longitudinal Study of Aging. The Journal of Clinical Endocrinology and Metabolism, 86(2): 724-31. [DOI:10.1210/jcem.86.2.7219] [PMID]
38. Wood JR and Strauss JF (2002) 3rd.multiple signal transduction pathways regulate ovarian steroidogenesis. Reviews in Endocrine & Metabolic Disorders, 3(1): 33-46. [DOI:10.1023/A:1012748718150] [PMID]
39. Demeestere I, Gervy C, Centner J, Devreker F, Englert Y, Delbaere A (2004) Effect of insulin-like growth factor-I during preantral follicular culture on steroidogenesis, in vitro oocyte maturation, and embryo development in mice. Biology of Reproduction, 70(6): 1664-9. [DOI:10.1095/biolreprod.103.023317] [PMID]
40. Hirakawa T, Minegishi T, Abe K, Kishi H, Ibuki Y, Miyamoto K (1999) A role of insulin-like growth factor I in luteinizing hormone receptor expression in granulosa cells. Endocrinology, 140(11): 4965-71. [DOI:10.1210/endo.140.11.7112] [PMID]
41. Feldman HA, Longcope C, Derby CA, Johannes CB, Araujo AB, Coviello AD, et al. (2002) Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study. The Journal of Clinical Endocrinology and Metabolism,. 87(2): 589-98. [DOI:10.1210/jcem.87.2.8201] [PMID]
42. Culty M, Luo L, Yao ZX, Chen H, Papadopoulos V, Zirkin BR (2002) Cholesterol transport, peripheral benzodiazepine receptor, and steroidogenesis in aging Leydig cells. Journal of Andrology, 23(3): 439-47.
43. Miller WL (1988) Molecular biology of steroid hormone synthesis. Endocrine Reviews, 9(3):295-318. [DOI:10.1210/edrv-9-3-295] [PMID]
44. Naito Y, Lee M-C-i, Kato Y, Nagai R, Yonei Y (2010) Oxidative Stress Markers. Anti-Aging Medicine, 7(5): 36-44. [DOI:10.3793/jaam.7.36]
45. Kanaya H, Hashimoto S, Teramura T, Morimoto Y, Matsumoto K, Saeki K, et al. (2007) Mitochondrial dysfunction of in vitro grown rabbit oocytes results in preimplantation embryo arrest after activation. The Journal of Reproduction and Development, 53(3):631-7. [DOI:10.1262/jrd.19010] [PMID]
46. Shaban NZ, Ahmed Zahran AM, El-Rashidy FH, Abdo Kodous AS (2017) Protective role of hesperidin against γ-radiation-induced oxidative stress and apoptosis in rat testis. J Biol Res (Thessalon), 24: 5. [DOI:10.1186/s40709-017-0059-x] [PMID] []
47. Kregel KC and Zhang HJ (2007) An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 292(1): R18-36. [DOI:10.1152/ajpregu.00327.2006] [PMID]
48. Dutsch-Wicherek M, Sikora J, Tomaszewska R (2008) The possible biological role of metallothionein in apoptosis. Frontiers in Bioscience : A Journal and Virtual Library, 13: 4029-38. [DOI:10.2741/2991] [PMID]
49. Bakka A, Johnsen AS, Endresen L, Rugstad HE (1982) Radioresistance in cells with high content of metallothionein. Experientia, 38(3):381-3. [DOI:10.1007/BF01949406] [PMID]
50. Sato M and Bremner I (1993) Oxygen free radicals and metallothionein. Free Radical Biology & Medicine, 14(3):325-37. [DOI:10.1016/0891-5849(93)90029-T]
51. Iszard MB, Liu J, Klaassen CD (1995) Effect of several metallothionein inducers on oxidative stress defense mechanisms in rats. Toxicology, 104(1-3):25-33. [DOI:10.1016/0300-483X(95)03118-Y]
52. Satoh M, Aoki Y, Tohyama C (1997) Protective role of metallothionein in renal toxicity of cisplatinum. Cancer Chemotherapy and Pharmacology, 40(4):358-62. [DOI:10.1007/s002800050670] [PMID]
53. Yang H-Y, Wang Y-M, Peng S-Q (2009) Basal expression of metallothionein suppresses butenolide-induced oxidative stress in liver homogenates in-vitro. Toxicon, 53(2):246-53. [DOI:10.1016/j.toxicon.2008.11.008] [PMID]
54. Mocchegiani E, Costarelli L, Giacconi R, Cipriano C, Muti E, Malavolta M (2006) Zinc-binding proteins (metallothionein and alpha-2 macroglobulin) and immunosenescence. Experimental Gerontology, 41(11):1094-107. [DOI:10.1016/j.exger.2006.08.010] [PMID]
55. Swindell WR(2011) Metallothionein and the biology of aging. Ageing Res Rev, 10(1):132-45. [DOI:10.1016/j.arr.2010.09.007] [PMID] []
56. Devine PJ, Perreault SD, Luderer U (2012) Roles of reactive oxygen species and antioxidants in ovarian toxicity. Biology of Reproduction, 86(2): 27. [DOI:10.1095/biolreprod.111.095224] [PMID] []
57. Jinno M, Tamura H, Yonei Y (2012) Anti-aging medicine and reproductive health. Anti-Aging Medicine,9(1):6-13. [DOI:10.3793/jaam.9.6]
Send email to the article author

Add your comments about this article
Your username or Email:


XML     Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fahmy H, Hawas A, Mohamed M. Impact of cherry juice on oxidative stress and fertility impairment in aged irradiated rats. Int J Radiat Res 2022; 20 (4) :799-806
URL: http://ijrr.com/article-1-4467-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 20, Issue 4 (10-2022) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 50 queries by YEKTAWEB 4657