[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
IJRR Information::
For Authors::
For Reviewers::
News & Events::
Web Mail::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
Hard Copy 2322-3243
Online 2345-4229
Online Submission
Now you can send your articles to IJRR office using the article submission system.



:: Volume 20, Issue 4 (10-2022) ::
Int J Radiat Res 2022, 20(4): 815-821 Back to browse issues page
FDG uptake in breast cancer and Quantitative Assessment of Breast Parenchymal Uptake on 18F-FDG PET/CT: Association with Histopathological, Hormonal status, and Clinical Features
G. Alçin , E. Arslan , T. Aksoy , S. Akbas , T.F. Cermik
University of Health Sciences Turkey, Istanbul Training and Research Hospital, Clinic of Nuclear Medicine, Istanbul, Turkey , gokselalcin@hotmail.com.tr
Abstract:   (806 Views)
Background: To evaluate the predictive value of the 18F-FDG PET/CT parameters on the histopathological features, receptor expression status, and molecular proliferation markers in breast cancer. Also, to assess the effect of the normal breast parenchymal uptake (BPU) on primary breast cancer. Materials and Methods: 287 patients were included, 198 patients with breast cancer (BC) and 89 patients with the healthy breast control group (CG). The metabolic parameters of breast carcinoma were compared with immunohistochemical subtypes, Ki-67 expression status, tumor size, axillary nodal involvement, and distant organ metastasis. We also analyzed the BPU using a 1.5 cm3 volume of interest (VOI) in the BC and CG groups. Results: There was a positive correlation between primary tumor SUVmax and tumor size (p=0.001), high Ki-67 expression (p<0.001), axillary nodal involvement (p<0,001), distant organ metastases (p=0.026), ER and PR negativity, and HER2 positivity (p=0.000, 0.001, and 0.021, respectively). Furthermore, the change in mean SUVmax in molecular subtypes was statistically significant (p<0.001). In addition, the SUVmax measured 0.5 cm from the tumor in the same quadrant is higher than the opposite quadrant and contralateral breast, suggesting that the distance to the tumor increases, the FDG uptake decreases (p<0.001 and 0.001, respectively). Conclusion: Strong relationships were detected between the ER and PR negativity, HER2-positivity, high Ki-67 expression, tumor size, axillary lymph node involvement, distant organ metastases, and SUVmax values. Therefore, we believe that metabolic parameters obtained with 18F-FDG PET/CT may provide relevant information about breast cancer tumor biology and suggest a potential role in identifying more aggressive behavior.
Keywords: FDG PET/CT, breast cancer, breast parenchymal uptake, SUVmax.
Full-Text [PDF 1079 kb]   (529 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
1. 1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 68(6): 394-424. [DOI:10.3322/caac.21492] [PMID]
2. D'Orsi CJ, Sickles EA, Mendelson EB, Morris EA (2013) ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System. Reston, VA, American College of Radiology.
3. Magometschnigg HF, Baltzer PA, Fueger B, Helbich TH, Karanikas G, Dubsky P, et al. (2015) Diagnostic accuracy of 18F-FDG PET/CT compared with that of contrast-enhanced MRI of the breast at 3 T. Eur J Nucl Med Mol Imaging, 42(11): 1656-1665. [DOI:10.1007/s00259-015-3099-1] [PMID]
4. Bos R, van Der Hoeven JJ, van Der Wall E, van Der Groep P, van Diest PJ, Comans EF, et al. (2002) Biologic correlates of (18) fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol, 20(2): 379-387. [DOI:10.1200/JCO.2002.20.2.379] [PMID]
5. Buck A, Schirrmeister H, Kühn T, Shen C, Kalker T, Kotzerke J, et al. (2002) FDG uptake in breast cancer: correlation with biological and clinical prognostic parameters. Eur J Nucl Med Mol Imaging, 29(10): 1317-1323. [DOI:10.1007/s00259-002-0880-8] [PMID]
6. Leithner D, Baltzer PA, Magometschnigg HF, Wengert GJ, et al. (2016) Quantitative assessment of breast parenchymal uptake on 18F-FDG PET/CT: correlation with age, background parenchymal enhancement, and amount of fibroglandular tissue on MRI. J Nucl Med, 57(10): 1518-1522. [DOI:10.2967/jnumed.116.174904] [PMID]
7. An YS, Jung Y, Kim JY, Han S, Kang DK, Park SY, et al. (2017) Metabolic Activity of Normal Glandular Tissue on 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography: Correlation with Menstrual Cycles and Parenchymal Enhancements. J Breast Cancer, 20(4): 386-392. [DOI:10.4048/jbc.2017.20.4.386] [PMID] []
8. Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. (2020) Molecular portraits of human breast tumours. Nature, 406(6797): 747-752. [DOI:10.1038/35021093] [PMID]
9. Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, et al. (2013) American Society of Clinical Oncology; College of American Pathologists. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol, 31(31): 3997-4013. [DOI:10.1200/JCO.2013.50.9984] [PMID]
10. Sarli A, Mozdarani H, Rakhshani N, Mozdarani S (2019) Relationship study of the verified human epidermal growth factor receptor 2 amplification with other tumor markers and clinicohistopathological characteristics in patients with invasive breast cancer, using chromogenic in-situ hybridization. Cell J, 21(3): 322-330.
11. Avril N, Bense S, Ziegler SI, Dose J, Weber W, Laubenbacher C, et al. (1997) Breast imaging with fluorine-18-FDG PET: quantitative image analysis. J Nucl Med, 38(8): 1186-1191.
12. Nakajo M, Kajiya Y, Kaneko T, Kaneko Y, Takasaki T, Tani A, et al. (2010) FDG PET/CT and diffusion-weighted imaging for breast cancer: prognostic value of maximum standardised uptake values and apparent diffusion coefficient values of the primary lesion. Eur J Nucl Med Mol Imaging, 37(11): 2011-2020. [DOI:10.1007/s00259-010-1529-7] [PMID]
13. Ekmekcioglu O, Aliyev A, Yilmaz S, Arslan E, Kaya R, Kocael P, et al. (2013) Correlation of 18F- fluorodeoxyglucose uptake with histopathological prognostic factors in breast carcinoma. Nucl Med Commun, 34(11): 1055-1067. [DOI:10.1097/MNM.0b013e3283658369] [PMID]
14. Groheux D, Giacchetti S, Moretti JL, Porcher R, Espié M, Lehmann-Che J, et al. (2011) Correlation of high 18F-FDG uptake to clinical, pathological and biological prognostic factors in breast cancer. Eur J Nucl Med Mol Imaging, 38(3): 426-435. [DOI:10.1007/s00259-010-1640-9] [PMID]
15. Rivenbark AG, O'Connor SM, Coleman WB (2013) Molecular and cellular heterogeneity in breast cancer challenges for personalized medicine. Am J Pathol, 183(4): 1113-1124. [DOI:10.1016/j.ajpath.2013.08.002] [PMID] []
16. Jemal A, Ward EM, Johnson CJ, Cronin KA, Ma J, Ryerson B, et al. (2017) Annual report to the nation on the status of cancer, 1975-2014, featuring survival. J Natl Cancer Inst, 109(9): 1-22. [DOI:10.1093/jnci/djx030] [PMID] []
17. Gil-Rendo A, Martinez-Regueira F, Zornoza G, García-Velloso MJ, Beorlegui C, Rodriguez-Spiteri N (2009) Association between [18F]fluorodeoxyglucose uptake and prognostic parameters in breast cancer. Br J Surg, 96(2): 166-170. [DOI:10.1002/bjs.6459] [PMID]
18. De Cicco C, Gilardi L, Botteri E, Fracassi SL, Di Dia GA, Botta F, et al. (2013) Is [(18)F] fluorodeoxyglucose uptake by the primary tumor a prognostic factor in breast cancer? Breast, 22(1): 39-43. [DOI:10.1016/j.breast.2012.05.009] [PMID]
19. Ueda S, Tsuda H, Asakawa H, Shigekawa T, Fukatsu K, Kondo N, et al. (2008) Clinicopathological and prognostic relevance of uptake level using 18F- fluorodeoxyglucose positron emission tomography/computed tomography fusion imaging (18F-FDG PET/CT) in primary breast cancer. Jpn J Clin Oncol, 38(4): 250-258. [DOI:10.1093/jjco/hyn019] [PMID]
20. Basu S, Chen W, Tchou J, Mavi A, Cermik T, Czerniecki B, et al. (2008) Comparison of triple-negative and estrogen receptor-positive/progesterone receptor-positive/HER2-negative breast carcinoma using quantitative fluorine-18 fluorodeoxyglucose/positron emission tomography imaging parameters: a potentially useful method for disease characterization. Cancer, 112(5): 995-1000. [DOI:10.1002/cncr.23226] [PMID]
21. Inoue T, Yutani K, Taguchi T, Tamaki Y, Shiba E, Noguchi S (2004) Preoperative evaluation of prognosis in breast cancer patients by [18F]2-Deoxy-2-fluoro-D- glucose-positron emission tomography. J Cancer Res Clin Oncol, 130(5): 273-278. [DOI:10.1007/s00432-003-0536-5] [PMID]
22. Heudel P, Cimarelli S, Montella A, Bouteille C, Mognetti T (2010) Value of FDG-PET in primary breast cancer based on histopathological and immunohistochemical prognostic factors. Int J Clin Oncol, 15(6): 588-593. [DOI:10.1007/s10147-010-0120-3] [PMID]
23. Dehdashti F, Mortimer JE, Siegel BA, Griffeth LK, Bonasera TJ, Fusselman MJ, et al. (1995) Positron tomographic assessment of estrogen receptors in breast cancer: a comparison with FDG-PET and in-vitro receptor assays. J Nucl Med, 36(10): 1766-1774.
24. Mavi A, Cermik TF, Urhan M, Puskulcu H, Basu S, Yu JQ, et al. (2007) The effects of estrogen, progesterone, and C-erbB-2 receptor states on 18F-FDG uptake of primary breast cancer lesions. J Nucl Med, 48(8): 1266-1272. [DOI:10.2967/jnumed.106.037440] [PMID]
25. Kim BS and Sung SH (2012) Usefulness of 18F-FDG uptake with clinicopathologic and immunohistochemical prognostic factors in breast cancer. Ann Nucl Med, 26(2): 175-83. [DOI:10.1007/s12149-011-0556-1] [PMID]
26. Yoon HJ, Kang KW, Chun IK, Cho N, Im SA, Jeong S, et al. (2014) Correlation of breast cancer subtypes, based on estrogen receptor, progesterone receptor, and HER2, with functional imaging parameters from 68Ga-RGD PET/CT and 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging, 41(8): 1534-1543. [DOI:10.1007/s00259-014-2744-4] [PMID]
27. Garcia-Vicente AM, Castrejón ÁS, López-Fidalgo JF, Amo-Salas M, et al. (2015) Basal (18)F-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography as a prognostic biomarker in patients with locally advanced breast cancer. Eur J Nucl Med Mol Imaging, 42(12): 1804-1813. [DOI:10.1007/s00259-015-3102-x] [PMID]
28. Sanli Y, Kuyumcu S, Ozkan ZG, Işik G, Karanlik H, Guzelbey B, et al. (2012) Increased FDG uptake in breast cancer is associated with prognostic factors. Ann Nucl Med, 26(4): 345-350. [DOI:10.1007/s12149-012-0579-2] [PMID]
29. Petrelli F, Viale G, Cabiddu M, Barni S (2015) Prognostic value of different cut-off levels of Ki-67 in breast cancer: a systematic review and meta-analysis of 64,196 patients. Breast Cancer Res Treat, 153(3): 477-491. [DOI:10.1007/s10549-015-3559-0] [PMID]
30. Kitajima K, Miyoshi Y, Yamano T, Odawara S, Higuchi T, Yamakado K (2018) Prognostic value of FDG-PET and DWI in breast cancer. Ann Nucl Med, 32(1): 44-53. [DOI:10.1007/s12149-017-1217-9] [PMID]
31. Groheux D, Biard L, Lehmann-Che J, Teixeira L, Bouhidel FA, Poirot B, et al. (2018) Tumor metabolism assessed by FDG-PET/CT and tumor proliferation assessed by genomic grade index to predict response to neoadjuvant chemotherapy in triple negative breast cancer. Eur J Nucl Med Mol Imaging, 45(8): 1279-1288. [DOI:10.1007/s00259-018-3998-z] [PMID]
32. Koo HR, Park JS, Kang KW, Han W, Park IA, Moon WK (2015) Correlation between 18F-FDG uptake on PET/CT and prognostic factors in triple-negative breast cancer. Eur Radiol, 25(11): 3314-3321. [DOI:10.1007/s00330-015-3734-z] [PMID]
33. Surov A, Meyer HJ, Wienke A (2019) Associations between PET parameters and expression of Ki-67 in breast cancer. Transl Oncol, 12(2): 375-380. [DOI:10.1016/j.tranon.2018.11.005] [PMID] []
34. Cermik TF, Mavi A, Basu S, Alavi A (2008) Impact of FDG PET on the preoperative staging of newly diagnosed breast cancer. Eur J Nucl Med Mol Imaging, 35(3): 475-483. [DOI:10.1007/s00259-007-0580-5] [PMID]
35. Koolen B, Peeters V, Wesseling J, Lips EH, Vogel WV, Aukema TS, et al. (2012) Association of primary tumour FDG uptake with clinical, histopathological and molecular characteristics in breast cancer patients scheduled for neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging, 39(12): 1830-1838. [DOI:10.1007/s00259-012-2211-z] [PMID]
36. Miyake KK, Nakamoto Y, Kanao S, Tanaka S, Sugie T, Mikami Y, et al. (2014) Journal Club: Diagnostic value of 18F-FDG PET/CT and MRI in predicting the clinicopathologic subtypes of invasive breast cancer. Am J Roentgenol, 203(2): 272-279. [DOI:10.2214/AJR.13.11971] [PMID]
37. Hruska CB, Geske JR, Swanson TN, Mammel AN, Lake DS, Manduca A, et al. (2018) Quantitative background parenchymal uptake on molecular breast imaging and breast cancer risk: a case-control study. Breast Cancer Res, 20(1): 46. [DOI:10.1186/s13058-018-0973-3] [PMID] []
Send email to the article author

Add your comments about this article
Your username or Email:


XML     Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Alçin G, Arslan E, Aksoy T, Akbas S, Cermik T. FDG uptake in breast cancer and Quantitative Assessment of Breast Parenchymal Uptake on 18F-FDG PET/CT: Association with Histopathological, Hormonal status, and Clinical Features. Int J Radiat Res 2022; 20 (4) :815-821
URL: http://ijrr.com/article-1-4472-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 20, Issue 4 (10-2022) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.06 seconds with 50 queries by YEKTAWEB 4657