1. 1. Juste B, Miró R, Morató S, et al.(2020) Prostate cancer Monte Carlo dose model with 177Lutetium and 125Iodine treatments. Radiat Phys Chem, 174: 108908. [ DOI:10.1016/j.radphyschem.2020.108908] 2. Machtens S, Baumann R, Hagemann J, et al. (2006) Long-term results of interstitial brachytherapy (LDR-Brachytherapy) in the treatment of patients with prostate cancer. World J Urol, 24: 289-295. [ DOI:10.1007/s00345-006-0083-1] [ PMID] 3. Holm HH, Juul N, Pedersen JF, et al. (2002) Transperineal 125iodine seed implantation in prostatic cancer guided by transrectal ultrasonography. J Urology, 167: 985-988. [ DOI:10.1016/S0022-5347(02)80320-2] [ PMID] 4. Holm H and Gammelgaard J (1981) Ultrasonically guided precise needle placement in the prostate and the seminal vesicles. J Urology, 125: 385-387. [ DOI:10.1016/S0022-5347(17)55044-2] [ PMID] 5. Skowronek J (2017) Current status of brachytherapy in cancer treatment-short overview. J Contemp Brachyther, 9: 581. [ DOI:10.5114/jcb.2017.72607] [ PMID] [ ] 6. Tanaka N, Fujimoto K, Hirao Y, et al. (2009) Variations in international prostate symptom scores, uroflowmetric parameters, and prostate volume after 125I permanent brachytherapy for localized prostate cancer. Urology, 74: 407-411. [ DOI:10.1016/j.urology.2008.12.062] [ PMID] 7. Jinming H and Ningwen Y (2020) Progress of permanent seed implantation using 125I-seeds for cancer therapy. J Isotopes, 33: 186. 8. Carrier J-F, D'Amours M, Verhaegen F, et al. (2007). Postimplant dosimetry using a Monte Carlo dose calculation engine: a new clinical standard. Int J radiat Oncol, 68: 1190-1198. [ DOI:10.1016/j.ijrobp.2007.02.036] [ PMID] 9. Rivard MJ, Coursey BM, DeWerd LA, Hanson WF, et al. (2003) Update of the AAPM task group no. 43 report - a revised AAPM protocol for brachytherapy dose calculations. Int J Radiat Oncol Biol Phys, 57: S430. [ DOI:10.1016/S0360-3016(03)01389-0] 10. Rivard MJ, Coursey BM, Dewerd LA, et al. (2004) Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations. Med Phys, 31: 633-674.
https://doi.org/10.1118/1.1812603 [ DOI:10.1118/1.1646040] [ PMID] 11. Burns GS and Raeside DE (1989) The accuracy of single-seed dose superposition for I-125 implants. Med Phys, 16: 627-631. [ DOI:10.1118/1.596320] [ PMID] 12. Mobit P and Badragan I (2004) Dose perturbation effects in prostate seed implant brachytherapy with I-125. Phys Med Biol, 49: 3171-3178. [ DOI:10.1088/0031-9155/49/14/011] [ PMID] 13. Meigooni Ali S (1992) Tissue inhomogeneity correction for brachytherapy sources in a heterogeneous phantom with cylindrical symmetry. Med Phys, 19: 401-407. [ DOI:10.1118/1.596894] [ PMID] 14. Kirov AS, Williamson JF, Meigooni AS, et al. (1996) Measurement and calculation of heterogeneity correction factors for an Ir-192 high dose-rate brachytherapy source behind tungsten alloy and steel shields. Med Phys, 23: 911-919. [ DOI:10.1118/1.597733] [ PMID] 15. Miksys N, Haidari M, Vigneault E, et al. (2017) Coupling I‐125 permanent implant prostate brachytherapy Monte Carlo dose calculations with radiobiological models. Med Phys, 44: 4329-4340. [ DOI:10.1002/mp.12306] [ PMID] 16. Stock RG, Stone NN, Tabert A, et al. (1998) A dose-response study for I-125 prostate implants. Int J Radiat Oncol, 41: 101-108. [ DOI:10.1016/S0360-3016(98)00006-6] [ PMID] 17. Meigooni AS, Meli JA, Nath R (1992) Interseed effects on dose for 125I brachytherapy implants. Med Phys, 19: 385-390. [ DOI:10.1118/1.596871] [ PMID] 18. Afsharpour H, D'Amours M, Coté B, et al. (2008) A Monte Carlo study on the effect of seed design on the interseed attenuation in permanent prostate implants. Med Phys, 35: 3671-3681. [ DOI:10.1118/1.2955754] [ PMID] 19. Yasiri AYA, Abed HF (2018) Estimation of Energy Spectrum and Energy Deposition of Photons Emitted from Brachytherapy 125 I Seed. Indian J Sci Tec, 11: 1-5. [ DOI:10.17485/ijst/2018/v11i24/126940] 20. Mason J, Al‐Qaisieh B, Bownes P, et al. (2013) Monte Carlo investigation of I-125 interseed attenuation for standard and thinner seeds in prostate brachytherapy with phantom validation using a MOSFET. Med Phys, 40: 031717. [ DOI:10.1118/1.4793256] [ PMID] 21. Chibani O, Williamson JF, Todor D (2005) Dosimetric effects of seed anisotropy and interseed attenuation for 103Pd and 125I prostate implants. Med Phys, 32: 2557-2566. [ DOI:10.1118/1.1897466] [ PMID] 22. Carrier JF, Beaulieu L, Therriault‐Proulx F, et al.(2006) Impact of interseed attenuation and tissue composition for permanent prostate implants. Med Phys, 33: 595-604.
https://doi.org/10.1118/1.2241562 [ DOI:10.1118/1.2168295] [ PMID] 23. Tamura K, Araki F, Ohno T (2016) SU-F-T-46: The Effect of Inter-Seed Attenuation and Tissue Composition in Prostate 125I Brachytherapy Dose Calculations. Med Phys, 43: 3471-3472. [ DOI:10.1118/1.4956181] 24. Safigholi H, Sardari D, Jashni SK, et al. (2013) An analytical model to determine interseed attenuation effect in low-dose-rate brachytherapy. J Appl Clin Med Phys, 14: 4226. [ DOI:10.1120/jacmp.v14i3.4226] [ PMID] [ ] 25. Mountris KA, Visvikis D, Bert J (2019) DVH-based inverse planning using Monte Carlo dosimetry for LDR prostate brachytherapy. Int J Radiat Oncol, 103: 503-510. [ DOI:10.1016/j.ijrobp.2018.09.041] [ PMID] 26. Al-Qaisieh B, Bownes P, Roberts G (2012) Evaluation of the visibility of a new thinner 125I radioactive source for permanent prostate brachytherapy. Brachytherapy, 11: 460-467. [ DOI:10.1016/j.brachy.2012.01.009] [ PMID] 27. Johnson M, Colonias A, Parda D, et al. (2006) Dosimetric and technical aspects of intraoperative I-125 brachytherapy for stage I non-small cell lung cancer. Med Phys, 33: 2089-2090. [ DOI:10.1118/1.2241102] 28. Wallner K, Merrick G, True L, et al. (2002) I-125 versus Pd-103 for low-risk prostate cancer: morbidity outcomes from a prospective randomized multicenter trial. Cancer Journal, 8: 67-73. [ DOI:10.1097/00130404-200201000-00012] [ PMID] 29. Rivard MJ (2009) A dosimetric comparison of the model 6711 125I source and a new, smaller diameter brachytherapy seed (model 9011) using Monte Carlo methods. Brachytherapy, 8: Issu 2. [ DOI:10.1016/j.brachy.2009.03.028] 30. Kenichi T, Tsuyoshi K, Takahiro H, et al. (2018 ) An in-vitro verification of strength estimation for moving an 125I source during implantation in brachytherapy. J Radiat Res, 59(4): 484-489. [ DOI:10.1093/jrr/rry021] [ PMID] [ ] 31. Rivard MJ (2009) Monte Carlo radiation dose simulations and dosimetric comparison of the model 6711 and 9011 125I brachytherapy sources. Med Phys, 36: 486-491.
https://doi.org/10.1118/1.3056463 [ DOI:10.1118/1.3093238] [ PMID] 32. Williams J (1997) The interdependence of staff and patient doses in interventional radiology. Brit J Radiol, 70: 498-503. [ DOI:10.1259/bjr.70.833.9227232] [ PMID] 33. Seltzer SM, Lamperti PJ, Loevinger R, et al. (2003) New National Air-Kerma-Strength Standards For 125I and 103Pd Brachytherapy Seeds. J Res Natl Inst Stand Technol, 108: 337-358. [ DOI:10.6028/jres.108.030] [ PMID] [ ] 34. Williamson and Jeffrey F (1988) Monte Carlo evaluation of specific dose constants in water for 125I seeds. Med Phys, 15: 686-694. [ DOI:10.1118/1.596181] [ PMID] 35. Wang R and Li XA (2000) A Monte Carlo calculation of dosimetric parameters of 90Sr/90Y and 192Ir SS sources for intravascular brachytherapy. Med Phys, 27: 2528-2535. [ DOI:10.1118/1.1319374] [ PMID] 36. Wierzbicki JG, Rivard MJ, Waid DS, et al.(1998). Calculated dosimetric parameters of the IoGold 125I source model 3631-A. Med Phys, 25: 2197-2199. [ DOI:10.1118/1.598417] [ PMID] 37. Chibani O and Li XA (2003) IVBTMC, A Monte Carlo dose calculation tool for intravascular brachytherapy. Med Phys, 30. [ DOI:10.1118/1.1528177] [ PMID] 38. Team X-MC. MCNP-Version 5, Vol. I: Overview and Theory. 2003. 39. Rivard MJ (2001) Monte Carlo calculations of AAPM Task Group Report No. 43 dosimetry parameters for the MED3631-A/M125I source. Med Phys, 28: 629. [ DOI:10.1118/1.1355306] [ PMID] 40. Chibani O and Li XA (2002) Monte Carlo dose calculations in homogeneous media and at interfaces: a comparison between GEPTS, EGSnrc, MCNP, and measurements. Med Phys, 29: 835-847. [ DOI:10.1118/1.1473134] [ PMID] 41. He J, Zhang H, Wang J, et al. (2012) Study on distribution of 125 I seed source dose field. Rad Prot Bulletin, 32: 36-38. 42. Li Z, Jiang S, Yang Z, et al. (2015) Monte Carlo simulation and experimental investigation of 125 I interseed dose attenuation. Chinese J RAD MEDI and PROT, 35: 389-392. 43. Kurudirek M (2014) Effective atomic numbers and electron densities of some human tissues and dosimetric materials for mean energies of various radiation sources relevant to radiotherapy and medical applications. Radiat Phys Chem, 102: 139-146. [ DOI:10.1016/j.radphyschem.2014.04.033] 44. Goldstone K (1989) Tissue substitutes in radiation dosimetry and measurement, in: ICRU Report 44, International Commission on Radiation Units and Measurements, USA. WB Saunders; 1990. 45. Hubbell JH and Seltzer SM (1995) Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20 MeV for elements Z= 1 to 92 and 48 additional substances of dosimetric interest. National Inst. of Standards and Technology-PL. [ DOI:10.6028/NIST.IR.5632] 46. Reed AL (2007) Medical physics calculations with MCNP: a primer. Boston, MA: Los Alamos National Laboratory, X-3 MCC, LA-UR-07-4133. 47. Duggan DM (2004) Improved radial dose function estimation using current version MCNP Monte-Carlo simulation: Model 6711 and ISC3500 125I brachytherapy sources. Appl Radiat Isot, 61:1443-1450. [ DOI:10.1016/j.apradiso.2004.05.070] [ PMID] 48. Fasso A, Ferrari A, Ranft J, et al. (2005) FLUKA: a multi-particle transport code. CERN-2005-10. [ DOI:10.2172/877507] 49. Niita K, Sato T, Iwase H, et al. (2006) PHITS-a particle and heavy ion transport code system. Radiat Meas, 41: 1080-1090. [ DOI:10.1016/j.radmeas.2006.07.013] 50. Reis JP, Menezes AF, Souza EM, et al. (2012) Dose optimization in 125I permanent prostate seed implants using the Monte Carlo method. Comput Phys Commun, 183: 847-852. [ DOI:10.1016/j.cpc.2011.12.005] 51. Serhat A (2021) The investigation of tissue composition effects on dose distributions using Monte Carlo method in permanent prostate brachytherapy. Clin Exper Heal Sci, 11: 769-774. [ DOI:10.33808/clinexphealthsci.884245] 52. Ali-Reza, Mehan, Haidari, et al. (2019) Dosimetric and radiobiological investigation of permanent implant prostate brachytherapy based on Monte Carlo calculations. Brachytherapy, 18: s 875-882. [ DOI:10.1016/j.brachy.2019.06.008] [ PMID] 53. Deering SG, Hilts M, Batchelar D, et al. (2021) Dosimetric investigation of 103Pd permanent breast seed implant brachytherapy based on Monte Carlo calculations. Brachytherapy, 20: 686-694. [ DOI:10.1016/j.brachy.2020.12.009] [ PMID]
|