[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 21, Issue 1 (1-2023) ::
Int J Radiat Res 2023, 21(1): 61-66 Back to browse issues page
Electromagnetic field exposed stem cells repaired Parkinson's disease symptoms in a rat model
T. Jadidi , N. Asadian , M. Jadidi , M. Safari , H.R. Sameni , V. Semnani
Department of Medical Physics, Semnan University of Medical Sciences, Semnan, Iran , Jadidim@semums.ac.ir
Abstract:   (720 Views)
Background: Some growth factors and electromagnetic fields (EMFs) are capable to differentiate bone marrow mesenchymal stem cells (BMMSCs) into neural cells. EMF may induce BMMSCs to differentiate into dopaminergic (DA) neurons. Our aim was to analyze the influence of EMF on BMMSCs in the treatment of rat models of Parkinson's disease. Materials and Methods: BMMSCs were extracted from the rat’s hind limbs and incubated in a cell-cultured CO2 incubator. After the third passage, the BMMSCs were exposed to sinusoidal and square waveform EMF (400 µT, 75 Hz, 1 h/day - 1 week or 7 h/1 day) and injected into the substantia nigra region of Parkinson rats. Results: The results confirmed an increased number of TH+ neurons, a reduction of activated astrocytes, and an improvement in locomotor activity (Pole test) of sinusoidal EMF groups. Conclusion: We presented a low-frequency sinusoidal EMF that increased BMMSCs’ differentiation into DA neurons. The results indicated that injection of BMMSC exposed to sinusoidal 75 Hz EMF may increase TH+ cells in SNpc and motor coordination activity in the rat model of Parkinson's disease.
Keywords: Electromagnetic field, Bone marrow mesenchymal stem cell, Differentiation, Parkinson disease.
Full-Text [PDF 1394 kb]   (657 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. Safari M, Jafari B, Zarbakhsh S, Sameni HR, Vafaei AA, Khan Mohammadi N, Ghahari L (2016) G-CSF to mobilize transplanted bone marrow stem cells in rat model Parkinson's disease. Iran J Basic Med Sci, 19: 1318- 1324.
2. Deierborg T, Soulet D, Roybon L, Hall V, Brundin P (2008) Emerging restorative treatments for Parkinson's disease. Progress in Neurobiology, 85(4): 407-432. [DOI:10.1016/j.pneurobio.2008.05.001] [PMID]
3. Zarbakhsh S, Aldaghi MR, Sameni HR, Ghahari L, Khaleghi Lagmouj Y, Rahimi Jaberi KH, Parsaie H, Safari M (2019) Irisin protects the substantia nigra dopaminergic neurons in the rat model of Parkinson's disease. Iran J Basic Med Sci, 22: 722-728.
4. Bai WF, Xu WC, Feng Y, Huang H, Li XP, Deng CY, Zhang MS (2013) Fifty-Hertz electromagnetic fields facilitate the induction of rat bone mesenchymal stromal cells to differentiate into functional neurons. Cytotherapy, 15: 961-970. [DOI:10.1016/j.jcyt.2013.03.001] [PMID]
5. Park JE, Seo YK, Yoon HH, Kim CW, Park JK, Jeon S (2013) Electromagnetic fields induce neural differentiation of human bone marrow derived mesenchymal stem cells via ROS mediated EGFR activation. Neurochemistry International, 62: 418-424. [DOI:10.1016/j.neuint.2013.02.002] [PMID]
6. Urnukhsaikhan E, Cho H, Mishig-Ochir T, Seo YK, Park JK (2016) Pulsed electromagnetic fields promote survival and neuronal differentiation of human BM-MSCs. Life Sciences, 151: 130-138. [DOI:10.1016/j.lfs.2016.02.066] [PMID]
7. Jadidi M, Moghadas Biat S, Sameni HR, Safari M, Vafaei AA, Ghahari L (2016) Mesenchymal stem cells that located in the electromagnetic fields improves rat model of Parkinson's disease. Iran J Basic Med Sci, 19: 736-743.
8. Kim JH, Lee CH, Kim HG, Kim HR (2019) Decreased dopamine in striatum and difcult locomotor recovery from MPTP insult after exposure to radiofrequency electromagnetic felds. Scientific Reports, 9: 1201. [DOI:10.1038/s41598-018-37874-z] [PMID] []
9. Zymantiene J, Juozaitiene V, Zelvyte R, Oberauskas V, Spancerniene U, Sederevicius A, Aniuliene A (2020) Effect of electromagnetic field exposure on mouse brain morphological and histopathological profiling. J Vet Res, 64: 319-324. [DOI:10.2478/jvetres-2020-0030] [PMID] []
10. Chang HF, Lee YS, Tang TK, Cheng JY (2016) Pulsed DC electric field-induced differentiation of cortical neural precursor cells. PLoS ONE, 11(6): e0158133. [DOI:10.1371/journal.pone.0158133] [PMID] []
11. Xiong N, Huang J, Zhang Z, Zhang Z, Xiong J, et al. (2009) Stereotaxical infusion of Rotenone: a reliable rodent model for Parkinson's disease. PLoS ONE, 4(11): e7878. [DOI:10.1371/journal.pone.0007878] [PMID] []
12. Asadian N, Jadidi M, Safari M, Jadidi T, Gholami M (2021) EMF frequency dependent differentiation of rat bone marrow mesenchymal stem cells to astrocyte cells. Neuroscience Letters. 744: 135587. [DOI:10.1016/j.neulet.2020.135587] [PMID]
13. Abdel-Salam OME, Khadrawy YA, Youness ER, Mohammed NA, Abdel-Rahman RF, Seid Hussein J, Shafee N (2014) Effect of a single intrastriatal rotenone injection on oxidative stress and neurodegeneration in the rat brain. Comp Clin Pathol, 23: 1457-1467. [DOI:10.1007/s00580-013-1807-4]
14. Barthélémy A, Mouchard A, Bouji M, Blazy K, Puigsegur R, Villégier AS (2016) Glial markers and emotional memory in rats following acute cerebral radiofrequency exposures. Environ Sci Pollut Res, 23: 25343-25355. [DOI:10.1007/s11356-016-7758-y] [PMID]
15. Bai W, Li M, Xu W, Zhang M (2021) Comparison of effects of high- and low-frequency electromagnetic fields on proliferation and differentiation of neural stem cells. Neuroscience Letters, 741: 135463. [DOI:10.1016/j.neulet.2020.135463] [PMID]
16. Liddelow SA and Barres BA (2017) Reactive astrocytes: production, function, and therapeutic potential. Immunity, 46 (20): 957-967. [DOI:10.1016/j.immuni.2017.06.006] [PMID]
17. Morales I, Sanchez A, Rodriguez-Sabate C, Rodriguez M (2016) The astrocytic response to the dopaminergic denervation of the striatum. J Neurochem, 139(1): 81-95. [DOI:10.1111/jnc.13684] [PMID]
18. Zhong C, Zhang X, Xu Z, He R (2012) Effects of low-intensity electromagnetic fields on the proliferation and differentiation of cultured mouse bone marrow stromal cells. Phys Ther, 92(9): 1208-1219. [DOI:10.2522/ptj.20110224] [PMID]
19. Vadalà M, Vallelunga A, Palmieri L, Palmieri B, Morales-Medina JC, Lannitti T (2015) Mechanisms and therapeutic applications of electromagnetic therapy in Parkinson's disease. Behav Brain Funct, 11 (26). [DOI:10.1186/s12993-015-0070-z] [PMID] []
20. Riancho J, de la Torre JRS, Paz-Fajardo L, Limia C, Santurtun A, Cifra M, Kourtidis K, Fdez-Arroyabe P (2021) The role of magnetic fields in neurodegenerative diseases. Int J Biometeorol, 65: 107-117. [DOI:10.1007/s00484-020-01896-y] [PMID]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jadidi T, Asadian N, Jadidi M, Safari M, Sameni H, Semnani V. Electromagnetic field exposed stem cells repaired Parkinson's disease symptoms in a rat model. Int J Radiat Res 2023; 21 (1) :61-66
URL: http://ijrr.com/article-1-4570-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 21, Issue 1 (1-2023) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.07 seconds with 50 queries by YEKTAWEB 4645