[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 21, Issue 1 (1-2023) ::
Int J Radiat Res 2023, 21(1): 15-22 Back to browse issues page
Dosimetric and biological comparison of treatment plans between LINAC and robot systems in stereotactic body radiation therapy for localized prostate cancer
Z. Dai , L. Zhu , A. Wang , X. Guo , Y. Liu , Y. Zhuang , P. Yang , N. Li , H. Zhang , Z. Xiang
National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China , lee_ak@163.com
Abstract:   (883 Views)
Background: The aim of this study was to make a comparison of plan quality between MLC-based EDGE and the cone-based CyberKnife systems in SBRT of localized prostate cancer. Materials and Methods: Ten patients with target volumes from 34.65 to 82.16 cc were included. Treatment plans were created for both systems using the same constraints. Dosimetric indices including target coverage, conformity index (CI), homogeneity index (HI), gradient index (GI) were applied for target, while the sparing of critical organs was evaluated with special dose-volume metrics and integral dose. Meanwhile, the delivery time and monitor units (MUs) were also estimated. The radiobiological indices such as equivalent uniform dose (EUD), tumor control probability (TCP) and normal tissue complication probability (NTCP) were also analyzed. Results: Both plans produced similar target coverage, HI and GI. For EDGE, more conformal dose distribution as well as reduced exposure of critical organs were obtained together with reduction of 91% delivery time and 72% MUs. EDGE plans also got lower EUD for bladder, rectum, urethra and penile bulk, which associated with reduction of NTCPs. However, higher values of EUD and TCP for tumor were obtained with CK plans.  Conclusion: It indicated that both systems were capable of producing almost equivalent plan quality and can meet clinical requirements. CyberKnife has higher target dose while EDGE system has more advantages in normal tissue sparing and delivery efficiency.
Keywords: Stereotactic body radiotherapy, prostate cancer, CyberKnife, EDGE.
Full-Text [PDF 962 kb]   (912 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. Freeman DE and King CR (2011) Stereotactic body radiotherapy for low-risk prostate cancer: five-year outcomes. Radiat Oncol, 6: 3. [DOI:10.1186/1748-717X-6-3] [PMID] []
2. Katz AJ, Santoro M, Ashley R, Diblasio F, Witten M (2010) Stereotactic body radiotherapy for organ-confined prostate cancer. BMC Urlogy, 10: 1. [DOI:10.1186/1471-2490-10-1] [PMID] []
3. King CR, Brooks JD, Gill H, Pawlicki T, Cotrutz C, Presti JC Jr (2009) Stereotactic body radiotherapy for localized prostate cancer: interim results of a prospective phase II clinical trial. Int J Radiat Oncol Biol Phys, 73: 1043-8. [DOI:10.1016/j.ijrobp.2008.05.059] [PMID]
4. Madsen BL, Hsi RA, Pham HT, Fowler JF, Esagui L, Corman J (2007) Stereotactic hypofractionated accurate radiotherapy of the prostate (SHARP), 33.5 Gy in five fractions for localized disease: first clinical trial results. Int J Radiat Oncol Biol Phys, 67: 1099-105. [DOI:10.1016/j.ijrobp.2006.10.050] [PMID]
5. Mohler JL, Armstrong AJ, Bahnson RR, D'Amico AV, Davis BJ, Eastham JA, et al. (2016) Prostate Cancer, Version 1.2016. J Natl Compr Canc Netw, 14: 19-30. [DOI:10.6004/jnccn.2016.0004] [PMID]
6. Sudahar H, Kurup PG, Murali V, Mahadev P, Velmurugan J (2012) Equivalent normalized total dose estimates in cyberknife radiotherapy dose delivery in prostate cancer hypofractionation regimens. J Med Phys, 37(2): 90-6. [DOI:10.4103/0971-6203.94743] [PMID] []
7. Henderson DR, Tree AC, van As NJ (2015) Stereotactic body radiotherapy for prostate cancer. Clin oncol, 27: 270-9. [DOI:10.1016/j.clon.2015.01.011] [PMID]
8. Miralbell R, Roberts SA, Zubizarreta E, Hendry JH (2012) Dose-fractionation sensitivity of prostate cancer deduced from radiotherapy outcomes of 5,969 patients in seven international institutional datasets: ɑ/β= 1:4(0:9−2:2) Gy. Int J Radiat Oncol Biol Phys, 82(1): e17-24. [DOI:10.1016/j.ijrobp.2010.10.075] [PMID]
9. Ritter M, Forman J, Kupelian P, Lawton C, Petereit D (2009) Hypofractionation for prostate cancer. Cancer J, 15(1):1-6. [DOI:10.1097/PPO.0b013e3181976614] [PMID] []
10. Brenner DJ (2004) Fractionation and late rectal toxicity. Int J Radiat Oncol Biol Phys, 60(4): 1013-5. [DOI:10.1016/j.ijrobp.2004.04.014] [PMID]
11. Dasu A and Toma-Dasu I (2012) Prostate alpha/beta revisited-an analysis of clinical results from 14 patients. Acta Oncologica, 51(8): 963-974. [DOI:10.3109/0284186X.2012.719635] [PMID]
12. Cheung R, Tucker SL, Lee AK, de Crevoisier R, Dong L, Kamat A (2005) Dose-response characteristics of low- and intermediate-risk prostate cancer treated with external beam radiotherapy. Int J Radiat Oncol Biol Phys, 61(4): 993-1002. [DOI:10.1016/j.ijrobp.2004.07.723] [PMID]
13. Alongi F, Cozzi L, Arcangeli S, Iftode C, Comito T, Villa E, et al. (2013) Linac based SBRT for prostate cancer in 5 fractions with VMAT and flattening filter free beams: preliminary report of a phase II study. Radiat oncol, 8: 171. [DOI:10.1186/1748-717X-8-171] [PMID] []
14. Antypas C and Pantelis E (2008) Performance evaluation of a CyberKnife G4 image-guided robotic stereotactic radiosurgery system. Phys Med Biol, 53(17): 4697-718. [DOI:10.1088/0031-9155/53/17/016] [PMID]
15. King CR, Brooks JD, Gill H, Presti JC Jr (2012) Long-term outcomes from a prospective trial of stereotactic body radiotherapy for low-risk prostate cancer. Int J Radiat Oncol Biol Phys, 82(2): 877-82. [DOI:10.1016/j.ijrobp.2010.11.054] [PMID]
16. Hossain S, Xia P, Huang K, Descovich M, Descovich M, Chuang C, Gottschalk AR, et al. (2010) Dose gradient near target-normal structure interface for nonisocentric CyberKnife and isocentric intensity-modulated body radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys, 78(1): 58-63. [DOI:10.1016/j.ijrobp.2009.07.1752] [PMID]
17. Wen N, Li H, Song K, Chin-Snyder K, Qin Y, Kim J, et al. (2015) Characteristics of a novel treatment system for linear accelerator-based stereotactic radiosurgery. J Appl Clin Med Phys, 16(4): 125-48. [DOI:10.1120/jacmp.v16i4.5313] [PMID] []
18. Lang S, Shrestha B, Graydon S, Cavelaars F, Linsenmeier C, Hrbacek J, et al. (2013) Clinical application of flattening filter free beams for extracranial stereotactic radiotherapy. Radiother Oncol, 106(2): 255-9. [DOI:10.1016/j.radonc.2012.12.012] [PMID]
19. MacDougall ND, Dean C, Muirhead R (2014) Stereotactic body radiotherapy in prostate cancer: Is Rapidarc a Better Solution than Cyberknife? Clin Oncol, 26: 4-9. [DOI:10.1016/j.clon.2013.08.008] [PMID]
20. Lin YW, Lin KH, Ho HW, Lin HM, Lin LC, Lee SP, Chui CS (2014) Treatment plan comparison between stereotactic body radiation therapy techniques for prostate cancer: Non-isocentric CyberKnife versus isocentric RapidArc. Phys Med, 30: 654-61. [DOI:10.1016/j.ejmp.2014.03.008] [PMID]
21. Ceylan C, Kucuk N, Bas Ayata H, Guden M, Engin K (2010) Dosimetric and physical comparison of IMRT and CyberKnife plans in the treatment of localized prostate cancer. Rep Pract Oncol Radiother, 15(6): 181-9. [DOI:10.1016/j.rpor.2010.10.003] [PMID] []
22. Lukka H, Bahary JP, Lawton C, et al. (2015) RTOG 0938: a randomized phase II trial of hypofractionated radiotherapy for favorable risk prostate cancer. RTOG, Hamilton, Canada.
23. Zwahlen DR, Lang S, Hrbacek J, Glanzmann C, Kloeck S, Najafi Y, et al. (2012) The use of photon beams of a flattening filter-free linear accelerator for hypofractionated volumetric modulated arc therapy in localized prostate cancer. Int J Radiat Oncol Biol Phys, 83(5): 1655-60. [DOI:10.1016/j.ijrobp.2011.10.019] [PMID]
24. Aoyama H, Westerly DC, Mackie TR, Olivera GH, Bentzen SM, Patel RR, et al ( 2006) Integral radiation dose to normal structures with conformal external beam radiation. Int J Radiat Oncol Biol Phys, 64: 962-7. [DOI:10.1016/j.ijrobp.2005.11.005] [PMID]
25. van't Riet A, Mak AC, Moerland MA, Elders LH, van der Zee W (1997) A conformation number to quantify the degree of conformality in brachytherapy and external beam irradiation: application to the prostate. Int J Radiat Oncol Biol Phys, 37(3): 731-6. [DOI:10.1016/S0360-3016(96)00601-3]
26. Feuvret L, Noël G, Mazeron JJ, Bey P (2006) Conformity index: a review. Int J Radiat Oncol Biol Phys, 64(2): 333-42. [DOI:10.1016/j.ijrobp.2005.09.028] [PMID]
27. Wu Q, Mohan R, Morris M, Lauve A, Schmidt-Ullrich R (2003) Simultaneous integrated boost intensity-modulated radiotherapy for locally advanced head-and-neck squamous cell carcinomas. I: dosimetric results. Int J Radiat Oncol Biol Phys, 56(2): 573-585. [DOI:10.1016/S0360-3016(02)04617-5] [PMID]
28. Paddick I and Lippitz B (2006) A simple dose gradient measurement tool to complement the conformity index. J Neurosurg, 105: 194-201. [DOI:10.3171/sup.2006.105.7.194] [PMID]
29. Niemierko A (1997) Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med Phys, 24(1): 103-10. [DOI:10.1118/1.598063] [PMID]
30. Luxton G, Keall PJ, King CR (2008) A new formula for normal tissue complication probability (NTCP) as a function of equivalent uniform dose (EUD). Phys Med Biol, 53: 23. [DOI:10.1088/0031-9155/53/1/002] [PMID]
31. Boulé TP, Gallardo Fuentes MI, Roselló JV, Arrans Lara R, Torrecilla JL, Plaza AL (2009) Clinical comparative study of dose-volume and equivalent uniform dose based predictions in post radiotherapy acute complications. Acta Oncol, 48(7): 1044-53. [DOI:10.1080/02841860903078513] [PMID]
32. Michalski JM, Gay H, Jackson A, Tucker SL, Deasy JO (2010) Radiation dose-volume effects in radiation-induced rectal injury. Int J Radiat Oncol Biol Phys, 76(3): S123-9. [DOI:10.1016/j.ijrobp.2009.03.078] [PMID] []
33. Panettieri V, Rancati T, Onjukka E, Smith R, Ebert M, Joseph DJ, et al. (2018) PV-0321: Influence of urethra contouring on NTCP models predicting urethral strictures in prostate HDRB. Radiother Oncol, 127(1): S170. [DOI:10.1016/S0167-8140(18)30631-5]
34. Coates J, Jeyaseelan A K, Ybarra N, David M, Faria S, Souhami L, et al. (2015) Contrasting analytical and data-driven frameworks for radiogenomic modeling of normal tissue toxicities in prostate cancer. Radiother Oncol, 115(1):107-113. [DOI:10.1016/j.radonc.2015.03.005] [PMID]
35. Thames HD and Hendry JH (1987) Fractionation in radiotherapy. London-New York-Philadelphia: Taylor & Francis.
36. Brenner DJ and Hall EJ (1999) Fractionation and protraction for radiotherapy of prostate carcinoma. Int J Radiat oncol Biol Phys, 43: 1095-101. [DOI:10.1016/S0360-3016(98)00438-6] [PMID]
37. Takam R, Bezak E, Yeoh EE, Marcu L (2010) Assessment of normal tissue complications following prostate cancer irradiation: comparison of radiation treatment modalities using NTCP models. Med Phys, 37(9): 5126-37. [DOI:10.1118/1.3481514] [PMID]
38. Niemierko A (1999) A unified model of tissue response to radiation. In: Proceedings of the 41th AAPM annual meeting; 1999. Nashville, Tennessee, Med Phys, p1100.
39. Okunieff P, Morgan D, Niemierko A, Suit HD (1995) Radiation dose-response of human tumors. Int J Radiat Oncol Biol Phys, 32(4): 1227-37. [DOI:10.1016/0360-3016(94)00475-Z]
40. Quan EM, Li X, Li Y, Wang X, Kudchadker RJ, Johnson JL, et al. (2012) A comprehensive comparison of IMRT and VMAT plan quality for prostate cancer treatment. Int J Radiat Oncol Biol Phys, 83(4): 1169-78. [DOI:10.1016/j.ijrobp.2011.09.015] [PMID] []
41. Langen KM and Jones DT (2001) Organ motion and its management. Int J Radiat Oncol Biol Phys, 50(1): 265-78. [DOI:10.1016/S0360-3016(01)01453-5]
42. Rosewall T, Chung P, Bayley A, Lockwood G, Alasti H, Bristow R, et al. (2008) A randomized comparison of interfraction and intrafraction prostate motion with and without abdominal compression. Radiother Oncol, 88(1): 88-94. [DOI:10.1016/j.radonc.2008.01.019] [PMID]
43. Reggiori G, Mancosu P, Tozzi A, Cantone MC, Castiglioni S, Lattuada P, et al. (2010) Cone beam CT pre- and post-daily treatment for assessing geometrical and dosimetric intrafraction variability during radiotherapy of prostate cancer. J Appl Clin Med Phys, 12(1): 3371. [DOI:10.1120/jacmp.v12i1.3371] [PMID] []
44. Zhao B, Yang Y, Ozhasoglu C, Heron D, Huq M (2012) SU-E-T-636: Comparison of RapidArc-based radiosurgery with cone-based cyberknife treatment for multiple intracranial tumors. Med phys, 39(6-20): 3852. [DOI:10.1118/1.4735725] [PMID]
45. Murphy MJ (1997) An automatic six-degree-of-freedom image registration algorithm for image-guided frameless stereotaxic radiosurgery. Med Phys, 24(6): 857-66. [DOI:10.1118/1.598005] [PMID]
46. Alasti H, Petric MP, Catton CN, Warde PR (2001). Portal imaging for evaluation of daily on-line setup errors and off-line organ motion during conformal irradiation of carcinoma of the prostate. Int J Radiat oncol Biol Phys, 49(3): 869-884. [DOI:10.1016/S0360-3016(00)01446-2] [PMID]
47. Willoughby TR, Kupelian PA, Pouliot J, Shinohara K, Aubin M, Roach M, et al. (2006) Target localization and real-time tracking using the Calypso 4D localization system in patients with localized prostate cancer. Int J Radiat Oncol Biol Phys, 65(2): 528-34. [DOI:10.1016/j.ijrobp.2006.01.050] [PMID]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dai Z, Zhu L, Wang A, Guo X, Liu Y, Zhuang Y, et al . Dosimetric and biological comparison of treatment plans between LINAC and robot systems in stereotactic body radiation therapy for localized prostate cancer. Int J Radiat Res 2023; 21 (1) :15-22
URL: http://ijrr.com/article-1-4579-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 21, Issue 1 (1-2023) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 50 queries by YEKTAWEB 4652