[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 21, Issue 2 (4-2023) ::
Int J Radiat Res 2023, 21(2): 239-246 Back to browse issues page
Genome-wide profiling of DNA methylation and gene expression in radiation-resistant esophageal cancer cells
L-R Zhou , L. Wang , Z-C Tao , M. Cheng , J. Gao , L-T Qian
Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, China , money2004@sina.com
Abstract:   (668 Views)
Background: While there have been marked improvements in radiotherapeutic techniques in recent years, the emergence of radioresistance remains a pressing challenge to the clinical treatment of esophageal squamous cell carcinoma (ESCC). Altered DNA methylation is believed to play a role in the etiology of such resistance. This study was designed to explore patterns of altered genome-wide gene expression and DNA methylation patterns in radioresistant ESCC cells (TE1-res) in an effort to provide a foundation for the future study of the molecular drivers that underlie this form of therapeutic resistance. Materials and Methods: A microarray-based approach was used to conduct genome-wide DNA methylation and gene expression analyses using matched radioresistant and radioresistant ESCC cells. The mechanistic basis for ESCC cell radioresistance was then further examined through functional enrichment and protein-protein interaction analyses. Results: Relative to parental TE1 cells, TE1-res cells exhibited marked changes in their DNA methylation profiles, with the disproportional distribution of differentially methylated CpG sites (dmCpGs) in CpG islands and shore regions. Ontological analyses revealed that genes that were differentially expressed and methylated were enriched in the Ras protein signal transduction, regulation of DNA damage response, and angiogenesis pathways. Protein-protein interaction analyses further suggested that ACTL8, M-RAS, TRIB2, GATA5, ERBB4, FN1, DIRAS1, BTK, ROR1, and NPR3 may serve as hub proteins within TE1-res cells. Conclusions: These analyses revealed a significant association between DNA methylation and TE1-res cell radioresistance, highlighting several candidate genes and pathways that may be amenable to clinical targeting in an effort to increase the radiosensitivity of these ESCC cells.
Keywords: Esophageal cancer cell line, Radiation tolerance, Gene microarray, DNA methylation.
Full-Text [PDF 1057 kb]   (481 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. 1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin, 71(3): 209-249. [DOI:10.3322/caac.21660] [PMID]
2. Zielske SP (2015) Epigenetic DNA methylation in radiation biology: on the field or on the sidelines? J Cell Biochem, 116(2): 212-217. [DOI:10.1002/jcb.24959] [PMID]
3. You JS and Jones PA (2012) Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell, 22(1): 9-20. [DOI:10.1016/j.ccr.2012.06.008] [PMID] []
4. Ambrosi C, Manzo M, Baubec T (2017) Dynamics and Context-Dependent Roles of DNA Methylation. J Mol Biol, 429(10): 1459-1475. [DOI:10.1016/j.jmb.2017.02.008] [PMID]
5. Ehrlich M (2009) DNA hypomethylation in cancer cells. Epigenomics, 1(2): 239-259. [DOI:10.2217/epi.09.33] [PMID] []
6. Szigeti KA, Galamb O, Kalmar A, Bartak BK, et al. (2018) Role and alterations of DNA methylation during the aging and cancer. Orv Hetil, 159(1): 3-15. [DOI:10.1556/650.2018.30927] [PMID]
7. Mangelinck A and Mann C (2021) DNA methylation and histone variants in aging and cancer. Int Rev Cell Mol Biol, 364: 1-110. [DOI:10.1016/bs.ircmb.2021.06.002] [PMID]
8. Simo-Riudalbas L and Esteller M (2014) Cancer genomics identifies disrupted epigenetic genes. Hum Genet, 133(6): 713-725. [DOI:10.1007/s00439-013-1373-5] [PMID]
9. Raiche J, Rodriguez-Juarez R, et al. (2004) Sex- and tissue-specific expression of maintenance and de novo DNA methyltransferases upon low dose X-irradiation in mice. Biochem Biophys Res Commun, 325(1): 39-47. [DOI:10.1016/j.bbrc.2004.10.002] [PMID]
10. Miousse IR, Kutanzi KR, Koturbash I (2017) Effects of ionizing radiation on DNA methylation: from experimental biology to clinical applications. Int J Radiat Biol, 93(5): 457-469. [DOI:10.1080/09553002.2017.1287454] [PMID] []
11. Chen X, Liu L, Mims J, Punska EC, et al. (2015) Analysis of DNA methylation and gene expression in radiation-resistant head and neck tumors. Epigenetics, 10(6): 545-561. [DOI:10.1080/15592294.2015.1048953] [PMID] []
12. Newman MR, Sykes PJ, Blyth BJ, et al. (2014) The methylation of DNA repeat elements is sex-dependent and temporally different in response to X radiation in radiosensitive and radioresistant mouse strains. Radiat Res, 181(1): 65-75. [DOI:10.1667/RR13460.1] [PMID]
13. Antwih DA, Gabbara KM, Lancaster WD, et al. (2013) Radiation-induced epigenetic DNA methylation modification of radiation-response pathways. Epigenetics, 8(8): 839-848. [DOI:10.4161/epi.25498] [PMID] []
14. Lu B, Liang W, Lingran Z, Min C, Liting Q (2016) Cancer stem cells in radiation resistance of esophageal cancer:role and molecular mechanism. Chinese Journal of Radiation Oncology, 25(4): 401-406.
15. Ogoshi K, Hashimoto S, Nakatani Y, et al. (2011) Genome-wide profiling of DNA methylation in human cancer cells. Genomics, 98(4): 280-287. [DOI:10.1016/j.ygeno.2011.07.003] [PMID]
16. Shannon P, Markiel A, Ozier O, et al. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 13(11): 2498-2504. [DOI:10.1101/gr.1239303] [PMID] []
17. Yu H, Kim PM, Sprecher E, Trifonov V, Gerstein M (2007) The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS Comput Biol, 3(4): e59. [DOI:10.1371/journal.pcbi.0030059] [PMID] []
18. Kim EH, Park AK, Dong SM, Ahn JH, Park WY (2010) Global analysis of CpG methylation reveals epigenetic control of the radiosensitivity in lung cancer cell lines. Oncogene, 29(33): 4725-4731. [DOI:10.1038/onc.2010.223] [PMID]
19. Saxonov S, Berg P, Brutlag DL (2006) A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci U S A, 103(5): 1412-1417. [DOI:10.1073/pnas.0510310103] [PMID] []
20. Illingworth RS, Gruenewald-Schneider U, Webb S, et al. (2010) Orphan CpG islands identify numerous conserved promoters in the mammalian genome. PLoS Genet, 6(9): e1001134. [DOI:10.1371/journal.pgen.1001134] [PMID] []
21. Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, et al. (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet, 41(2): 178-186. [DOI:10.1038/ng.298] [PMID] []
22. Ji H, Ehrlich LI, Seita J, Murakami P, et al. (2010) Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature, 467(7313): 338-342. [DOI:10.1038/nature09367] [PMID] []
23. Rao X, Evans J, Chae H, Pilrose J, et al. (2013) CpG island shore methylation regulates caveolin-1 expression in breast cancer. Oncogene, 32(38): 4519-4528. [DOI:10.1038/onc.2012.474] [PMID] []
24. Orjuela S, Menigatti M, Schraml P, et al. (2020) The DNA hypermethylation phenotype of colorectal cancer liver metastases resembles that of the primary colorectal cancers. BMC Cancer, 20(1): 290. [DOI:10.1186/s12885-020-06777-6] [PMID] []
25. Medvedeva YA, Fridman MV, Oparina NJ, et al. (2010) Intergenic, gene terminal, and intragenic CpG islands in the human genome. BMC Genomics, 11: 48. [DOI:10.1186/1471-2164-11-48] [PMID] []
26. Lister R, Pelizzola M, Dowen RH, et al. (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 462(7271): 315-322. [DOI:10.1038/nature08514] [PMID] []
27. Yang X, Han H, Carvalho DDD, et al. (2014) Gene Body Methylation can alter Gene Expression and is a Therapeutic Target in Cancer. Cancer Cell, 26: 577-590. [DOI:10.1016/j.ccr.2014.07.028] [PMID] []
28. Maunakea AK, Nagarajan RP, Bilenky M, et al. (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature, 466(7303): 253-257. [DOI:10.1038/nature09165] [PMID] []
29. O'Connor C, Yalla K, Salome M, et al. (2018) Trib2 expression in granulocyte-monocyte progenitors drives a highly drug resistant acute myeloid leukaemia linked to elevated Bcl2. Oncotarget, 9(19): 14977-14992. [DOI:10.18632/oncotarget.24525] [PMID] []
30. Wang J, Zuo J, Wahafu A, Wang MD, et al. (2020) Combined elevation of TRIB2 and MAP3K1 indicates poor prognosis and chemoresistance to temozolomide in glioblastoma. CNS Neurosci Ther, 26(3): 297-308. [DOI:10.1111/cns.13197] [PMID] []
31. Guo S, Chen Y, Yang Y, Zhang X, et al. (2021) TRIB2 modulates proteasome function to reduce ubiquitin stability and protect liver cancer cells against oxidative stress. Cell Death Dis, 12(1): 42. [DOI:10.1038/s41419-020-03299-8] [PMID] []
32. Hou Z, Guo K, Sun X, Hu F, Chen Q, Luo X, et al. (2018) TRIB2 functions as novel oncogene in colorectal cancer by blocking cellular senescence through AP4/p21 signaling. Mol Cancer, 17(1): 172. [DOI:10.1186/s12943-018-0922-x] [PMID] []
33. Porse BT, Bryder D, Theilgaard-Monch K, et al. (2005) Loss of C/EBP alpha cell cycle control increases myeloid progenitor proliferation and transforms the neutrophil granulocyte lineage. J Exp Med, 202(1): 85-96. [DOI:10.1084/jem.20050067] [PMID] []
34. Dedhia PH, Keeshan K, Uljon S, Xu L, et al. (2010) Differential ability of Tribbles family members to promote degradation of C/EBPalpha and induce acute myelogenous leukemia. Blood, 116(8): 1321-1328. [DOI:10.1182/blood-2009-07-229450] [PMID] []
35. Wang J, Park JS, Wei Y, Rajurkar M, et al. (2013) TRIB2 acts downstream of Wnt/TCF in liver cancer cells to regulate YAP and C/EBPalpha function. Mol Cell, 51(2): 211-225. [DOI:10.1016/j.molcel.2013.05.013] [PMID] []
36. Machado S, Silva A, De Sousa-Coelho AL, et al. (2020) Harmine and Piperlongumine Revert TRIB2-Mediated Drug Resistance. Cancers (Basel), 12(12). [DOI:10.3390/cancers12123689] [PMID] []
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zhou L, Wang L, Tao Z, Cheng M, Gao J, Qian L. Genome-wide profiling of DNA methylation and gene expression in radiation-resistant esophageal cancer cells. Int J Radiat Res 2023; 21 (2) :239-246
URL: http://ijrr.com/article-1-4708-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 21, Issue 2 (4-2023) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.06 seconds with 50 queries by YEKTAWEB 4645