Department of Medical Imaging Center, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, Jiangxi, 330006, China , gong111999@126.com
Abstract: (1414 Views)
Background:Background: To evaluate the diagnostic performance of different radiomics models for preoperatively predicting microvascular invasion (MVI) of hepatocellular carcinoma (HCC). Materials and Methods: A total of 124 patients who had histologically confirmed HCC (training dataset: n=86; validation dataset: n=38) were included. Clinical factors (CFs) were extracted from medical data. Radiomics features were derived from the unenhanced phase, artery phase (AP), portal venous phase and delay phase CT images. The least absolute shrinkage and selection operator (LASSO) method was chosen to select the radiomics feature. Twelve models were established using three modeling methods (logistic regression [LR], support vector machine [SVM], and Bayes) with the radiomics signature. Receiver operating characteristic (ROC) analysis was used to evaluate the diagnostic performance of the models. A radiomics signature that performs well was integrated with the clinical factors into a combined model. Results: AP radiomics signatures achieved the best efficiency than other radiomics models. The LR model with the AP radiomics signature as the input factor showed better performance than the SVM and Bayes models, with an area under the curve (AUC) of 0.848 in the validation datasets. When integrating the AP radiomics signatures and clinical factors, the combined model performed better and reached an AUC of 0.875 in the validation datasets. Conclusions:The radiomics model demonstrated excellent performance for preoperatively predicting MVI in patients with HCC, especially the combined model. Different modeling methods could influence the effects of the diagnostic performance.
1. 1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin, 71: 209-49. [DOI:10.3322/caac.21660] [PMID]
2. Zhou M, Wang H, Zeng X, Yin P, Zhu J, Chen W, et al. (2019) Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 394: 1145-58. [DOI:10.1016/S0140-6736(19)30427-1] [PMID]
3. Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M, et al. (2019) Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. International Journal of Cancer, 144: 1941-53. [DOI:10.1002/ijc.31937] [PMID]
4. Xie DY, Ren ZG, Zhou J, Fan J, Gao Q (2020) 2019 Chinese clinical guidelines for the management of hepatocellular carcinoma: updates and insights. Hepatobiliary Surg Nutr, 9: 452- 63. [DOI:10.21037/hbsn-20-480] [PMID] []
5. Vitale A, Trevisani F, Farinati F, Cillo U (2020) Treatment of hepatocellular carcinoma in the precision medicine era: From treatment stage migration to therapeutic hierarchy. Hepatology, 72: 2206-18. [DOI:10.1002/hep.31187] [PMID]
6. European Association for the Study of the Liver, European Organization for Research and Treatment of Cancer (2012) EASL-EORTC clinical practice guidelines: Management of hepatocellular carcinoma. European Journal of Cancer, 56: 908- 43. [DOI:10.1016/j.jhep.2011.12.001] [PMID]
7. Kulik L and El-Serag HB (2019) Epidemiology and management of hepatocellular carcinoma. Gastroenterology, 156: 477-91.e1. [DOI:10.1053/j.gastro.2018.08.065] [PMID] []
8. Malloy PC (2019) Combination therapy in intermediate-stage hepatocellular carcinoma: Do we need to know about microvascular invasion? Radiology, 292: 248-9. [DOI:10.1148/radiol.2019190921] [PMID]
9. Zheng J, Seier K, Gonen M, Balachandran VP, Kingham TP, D'Angelica MI, et al. (2017) Utility of Serum Inflammatory Markers for Predicting Microvascular Invasion and Survival for Patients with Hepatocellular Carcinoma. Ann Surg Oncol, 24: 3706-14. [DOI:10.1245/s10434-017-6060-7] [PMID] []
10. Zhang XP, Wang K, Wei XB, Li LQ, Sun HC, Wen TF, et al. (2019) An Eastern hepatobiliary surgery hospital microvascular invasion scoring system in predicting prognosis of patients with hepatocellular carcinoma and microvascular invasion after R0 liver resection: A large-scale, multicenter study. Oncologist, 24: e1476-88. [DOI:10.1634/theoncologist.2018-0868] [PMID] []
11. Wei Y, Huang Z, Tang H, Deng L, Yuan Y, Li J, et al. (2019) IVIM improves preoperative assessment of microvascular invasion in HCC. European Radiology, 29: 5403-14. [DOI:10.1007/s00330-019-06088-w] [PMID]
12. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, et al. (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol, 14: 749-62. [DOI:10.1038/nrclinonc.2017.141] [PMID]
13. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: Images are more than pictures; They are data. Radiology, 278: 563-77. [DOI:10.1148/radiol.2015151169] [PMID] []
14. Liu Z, Wang S, Dong D, Wei J, Fang C, Zhou X, et al. (2019) The Applications of radiomics in precision diagnosis and treatment of oncology: Opportunities and challenges. Theranostics, 9: 1303-22. [DOI:10.7150/thno.30309] [PMID] []
15. Bakr S, Echegaray S, Shah R, Kamaya A, Louie J, Napel S, et al. (2017) Noninvasive radiomics signature based on quantitative analysis of computed tomography images as a surrogate for microvascular invasion in hepatocellular carcinoma: a pilot study. J Med Imaging, 4: 041303. [DOI:10.1117/1.JMI.4.4.041303] [PMID] []
16. He M, Zhang P, Ma X, He B, Fang C, Jia F (2020) Radiomic feature-based predictive model for microvascular invasion in patients with hepatocellular carcinoma. Front Oncol, 10: 574228. [DOI:10.3389/fonc.2020.574228] [PMID] []
17. Verma V, Simone CB 2nd, Krishnan S, Lin SH, Yang J, Hahn SM (2017) The rise of radiomics and implications for oncologic management. J Natl Cancer Inst, 109: page numbers?? [DOI:10.1093/jnci/djx055] [PMID]
18. Ma X, Wei J, Gu D, Zhu Y, Feng B, Liang M, Wang S, Zhao X, Tian J (2019) Preoperative radiomics nomogram for microvascular invasion prediction in hepatocellular carcinoma using contrast-enhanced CT. Eur Radiol, 29: 3595-3605. [DOI:10.1007/s00330-018-5985-y] [PMID]
19. Feng ST, Jia Y, Liao B, Huang B, Zhou Q, Li X, et al. (2019) Preoperative prediction of microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-DTPA-enhanced MRI. Eur Radiol, 29: 4648-59. [DOI:10.1007/s00330-018-5935-8] [PMID]
20. Choi JY, Lee JM, Sirlin CB (2014) CT and MR imaging diagnosis and staging of hepatocellular carcinoma: part II. Extracellular agents, hepatobiliary agents, and ancillary imaging features. Radiology, 273: 30-50. [DOI:10.1148/radiol.14132362] [PMID] []
21. Thompson SM, Wells ML, Andrews JC, Ehman EC, Menias CO, Hallemeier CL, et al. (2018) Venous invasion by hepatic tumors: imaging appearance and implications for management. Abdom Radiol, 43: 1947-67. [DOI:10.1007/s00261-017-1298-x] [PMID]
22. El-Sayes N, Vito A, Mossman K (2021) Tumor heterogeneity: A great barrier in the age of cancer immunotherapy. Cancers, 13: 806. [DOI:10.3390/cancers13040806] [PMID] []
23. Grossmann P, Stringfield O, El-Hachem N, Bui MM, Rios Velazquez E, Parmar C, et al. (2017) Defining the biological basis of radiomic phenotypes in lung cancer. Elife, 6: e23421. [DOI:10.7554/eLife.23421] [PMID] []
24. Mokrane FZ, Lu L, Vavasseur A, Otal P, Peron JM, Luk L, et al. (2020) Radiomics machine-learning signature for diagnosis of hepatocellular carcinoma in cirrhotic patients with indeterminate liver nodules. Eur Radiol, 30: 558-70. [DOI:10.1007/s00330-019-06347-w] [PMID]
25. Stylianou N, Akbarov A, Kontopantelis E, Buchan I, Dunn KW (2015) Mortality risk prediction in burn injury: Comparison of logistic regression with machine learning approaches. Burns, 41: 925-34. [DOI:10.1016/j.burns.2015.03.016] [PMID]
26. Zou ZM, Chang DH, Liu H, Xiao YD (2021) Current updates in machine learning in the prediction of therapeutic outcome of hepatocellular carcinoma: what should we know? Insights Imaging, 12: 31. [DOI:10.1186/s13244-021-00977-9] [PMID] []
27. Beunza JJ, Puertas E, García-Ovejero E, Villalba G, Condes E, Koleva G, et al. (2019) Comparison of machine learning algorithms for clinical event prediction (risk of coronary heart disease). J Biomed Inform, 97: 103257. [DOI:10.1016/j.jbi.2019.103257] [PMID]
28. Uddin S, Khan A, Hossain ME, Moni MA (2019) Comparing different supervised machine learning algorithms for disease prediction. BMC Med Inform Decis Mak, 19: 281. [DOI:10.1186/s12911-019-1004-8] [PMID] []
29. Xu Y, Li R, Li X, Dong N, Wu D, Hou L, Yin K, Zhao C (2020) An autophagy-related gene signature associated with clinical prognosis and immune microenvironment in gliomas. Front Oncol, 10: 571189. [DOI:10.3389/fonc.2020.571189] [PMID] []
Xiong L, Peng Y, Li S, Tang X, Zhou J, Gong L. Machine learning-based radiomics for preoperative prediction of microvascular invasion in hepatocellular carcinoma. Int J Radiat Res 2023; 21 (3) :383-390 URL: http://ijrr.com/article-1-4831-en.html