[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 21, Issue 3 (6-2023) ::
Int J Radiat Res 2023, 21(3): 435-446 Back to browse issues page
Investigation of the neuroprotective effect of Granisetron through SV2A and 5-HT3 modulation in a radiation-induced brain injury rat model
N. Cini , O. Atasoy , M.A. Erdogan , G. Yaprak , E. Eroglu , C. Sirin , Y. Uyanikgil , O. Erbas
Department of Physiology, Izmir Katip Çelebi University, Faculty of Medicine, Izmir, Turkey , alpero86@gmail.com
Abstract:   (1170 Views)
Background: The development of neurotoxicity in healthy, non-targeted brain tissue exposed to radiation during cranial radiotherapy (RT) is the most frequent event of radiation-induced adverse effects. The 5-hydroxytryptamine-3 (5-HT3) receptor antagonists may also have a range of neuroprotective, anti-inflammatory, and antiphlogistic properties in addition to their anti-emetic effects. Materials and Methods: Study groups were formed in the following ways: Group 2: Irradiation (IR)-only (IR+Saline); Group 1: Normal control (orally fed control); Group 3: IR+Granisetron (IR+Granisetron): whole-brain IR and Granisetron 1 mg/kg/day (Merck) administered orally. 15 days of all therapies were given. The 15 days were completed with behavioral testing. In the entire brain IR-only (placebo) group, a substantial deterioration was seen in all studied marker levels and behavioral test results. Results: Compared to the IR-only group, all of these biochemical indicators significantly improved in the granisetron group (IR+Granisetron), and levels of the control group returned to normal. In behavioral test analyses, a substantial decline in the open field and passive avoidance learning social recognition tests was seen in the IR-only group compared to the healthy control group, whereas an improvement was seen in the IR+Granisetron group. In addition, the IR-only group showed a reduction in hippocampus neurons and Purkinje neurons as well as an increase in hippocampal gliosis, whereas the IR+Granisetron group showed an improvement and a return to the normal control group counts. Conclusion: In summary, we discovered that granisetron had neuroprotective properties in a rat model of radiation-induced brain damage.
Keywords: Irradiation, granisetron, brain injury, 5-HT3, BDNF, SV2A, neuroinflammation.
Full-Text [PDF 1702 kb]   (656 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. Turnquist C, Harris BT, Harris CC (2020) Radiation-induced brain injury: current concepts and therapeutic strategies targeting neuroinflammation. Neurooncol Adv, 2(1): vdaa057. [DOI:10.1093/noajnl/vdaa057] [PMID] []
2. Fisher BJ, Bauman GS, Leighton CE, et al. (1998) Low-grade gliomas in children: tumor volume response to radiation. J Neurosurg, 88(6): 969-974. [DOI:10.3171/jns.1998.88.6.0969] [PMID]
3. Patchell RA, Tibbs PA, Regine WF, et al. (1998) Postoperative radiotherapy in the treatment of single metastases to the brain: a randomized trial. JAMA, 280(17): 1485-1489. [DOI:10.1001/jama.280.17.1485] [PMID]
4. Chien L, Chen WK, Liu ST, et al. (2015) Low-dose ionizing radiation induces mitochondrial fusion and increases expression of mitochondrial complexes I and III in hippocampal neurons. Oncotarget, 6(31): 30628-39. [DOI:10.18632/oncotarget.5790] [PMID] []
5. Kim W, Lee S, Seo D, et al. (2019) Cellular Stress Responses in Radiotherapy. Cells, 8(9): 1105. [DOI:10.3390/cells8091105] [PMID] []
6. Gondi V, Pugh SL, Tome WA, et al. (2014) Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases (RTOG 0933): a phase II multi-institutional trial. J Clin Oncol, 32(34): 3810-3816. [DOI:10.1200/JCO.2014.57.2909] [PMID] []
7. Brandes AA, Tosoni A, Spagnolli F, et al. (2008) Disease progression or pseudoprogression after concomitant radiochemotherapy treatment: pitfalls in neurooncology. Neuro Oncol, 10(3): 361-367. [DOI:10.1215/15228517-2008-008] [PMID] []
8. Tang Y, Li Y, Luo D, et al. (2011) Epilepsy related to radiotherapy in patients with nasopharyngeal carcinoma. Epilepsy Res, 96(1-2): 24-28. [DOI:10.1016/j.eplepsyres.2011.04.010] [PMID]
9. Vigliani MC, Duyckaerts C, Hauw JJ, et al. (1999) Dementia following treatment of brain tumors with radiotherapy administered alone or in combination with nitrosoureabased chemotherapy: a clinical and pathological study. J Neurooncol, 41(2): 137-149. [DOI:10.1023/A:1006183730847] [PMID]
10. McDuff SG, Taich ZJ, Lawson JD, et al. (2013) Neurocognitive assessment following whole brain radiation therapy and radiosurgery for patients with cerebral metastases. J Neurol Neurosurg Psychiatry, 84(12): 1384-1391. [DOI:10.1136/jnnp-2013-305166] [PMID]
11. Tofilon PJ and Fike JR (2000). The radioresponse of the central nervous system: a dynamic process. Radiat. Res, 153: 357-370. [DOI:10.1667/0033-7587(2000)153[0357:TROTCN]2.0.CO;2] [PMID]
12. Al Rihani SB, Lan RS, Kaddoumi A (2019) Granisetron alleviates alzheimer's disease pathology in TgSwDI mice through Calmodulin-Dependent protein Kinase II/cAMP-Response Element Binding Protein Pathway. J Alzheimers Dis, 72(4): 1097-1117. [DOI:10.3233/JAD-190849] [PMID] []
13. Yarker YE and McTavish D (1994) Granisetron. An update of its therapeutic use in nausea and vomiting induced by antineoplastic therapy. Drugs, 48(5): 761-93. [DOI:10.2165/00003495-199448050-00008] [PMID]
14. du Bois A, Vach W, Wechsel U, et al. (1996) 5-Hydroxyindoleacetic acid (5-HIAA) and cortisol excretion as predictors of chemotherapy-induced emesis. Br J Cancer, 74(7): 1137-40. [DOI:10.1038/bjc.1996.503] [PMID] []
15. Nayak SV, Rondé P, Spier AD, et al. (1999) Calcium changes induced by presynaptic 5-hydroxytryptamine-3 serotonin receptors on isolated terminals from various regions of the rat brain. Neuroscience, 91(1): 107-17. [DOI:10.1016/S0306-4522(98)00520-X]
16. Cloez-Tayarani, I (2006) Serotonin as a modulator of immune function: an overview. Curr. Immunol. Rev, 2: 27-35. [DOI:10.2174/157339506775471893]
17. Faerber L, Drechsler S, Ladenburger S, et al. (2007) The neuronal 5-HT3 receptor network after 20 years of research--evolving concepts in management of pain and inflammation. Eur J Pharmacol, 560(1): 1-8. [DOI:10.1016/j.ejphar.2007.01.028] [PMID]
18. Fakhfouri G, Rahimian R, Ghia JE, Khan WI, Dehpour AR (2012) Impact of 5-HT₃ receptor antagonists on peripheral and central diseases. Drug Discov Today, 17(13-14): 741-7. [DOI:10.1016/j.drudis.2012.02.009] [PMID]
19. Rossi R, Arjmand S, Bærentzen SL, Gjedde A, Landau AM (2022) Synaptic Vesicle Glycoprotein 2A: Features and Functions. Front Neurosci. 16: 864514. [DOI:10.3389/fnins.2022.864514] [PMID] []
20. Finnema SJ, Nabulsi NB, Eid T, et al. (2016) Imaging synaptic density in the living human brain. Sci Transl Med, 8(348): 348ra96. [DOI:10.1126/scitranslmed.aaf6667] [PMID]
21. Erbas O, Erdogan MA, Khalilnezhad A, et al. (2018) Neurobehavioral effects of long-term maternal fructose intake in rat offspring. Int J Dev Neurosci, 69: 68-79. [DOI:10.1016/j.ijdevneu.2018.07.001] [PMID]
22. Erbaş O, Solmaz V, Aksoy D, Yavaşoğlu A, Sağcan M, Taşkıran D (2014) Cholecalciferol (vitamin D 3) improves cognitive dysfunction and reduces inflammation in a rat fatty liver model of metabolic syndrome. Life Sci, 103(2): 68-72. [DOI:10.1016/j.lfs.2014.03.035] [PMID]
23. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72: 248-54. [DOI:10.1016/0003-2697(76)90527-3] [PMID]
24. Derindağ G, Akgül HM, Kızıltunç A, et al. (2021) Evaluation of saliva glutathione, glutathione peroxidase, and malondialdehyde levels in head-neck radiotherapy patients. Turk J Med Sci, 51(2): 644-649. [DOI:10.3906/sag-2006-84] [PMID] []
25. Canakci CF, Cicek Y, Yildirim A, et al. (2009) Increased levels of 8-hydroxydeoxyguanosine and malondialdehyde and its relationship with antioxidant enzymes in saliva of periodontitis patients. Eur J Dent, 3(2): 100-6. [DOI:10.1055/s-0039-1697415]
26. Halimi M, Parsian H, Asghari SM, et al. (2014) Clinical translation of human microRNA 21 as a potential biomarker for exposure to ionizing radiation. Transl Res, 163(6): 578-84. [DOI:10.1016/j.trsl.2014.01.009] [PMID]
27. Khalil Arjmandi M, Moslemi D, Sadati Zarrini A, et al. (2016) Pre and post radiotherapy serum oxidant/antioxidant status in breast cancer patients: Impact of age, BMI and clinical stage of the disease. Rep Pract Oncol Radiother, 21(3): 141-8. [DOI:10.1016/j.rpor.2015.12.009] [PMID] []
28. Nguyen TT, Ngo LQ, Promsudthi A, Surarit R (2016) Salivary Lipid Peroxidation in Patients with Generalized Chronic Periodontitis and Acute Coronary Syndrome. J Periodontol, 87(2): 134-41. [DOI:10.1902/jop.2015.150353] [PMID]
29. Shariff AK, Patil SR, Shukla PS, et al. (2009) Effect of oral antioxidant supplementation on lipid peroxidation during radiotherapy in head and neck malignancies. Indian J Clin Biochem, 24(3): 307-11. [DOI:10.1007/s12291-009-0057-3] [PMID] []
30. Metgud R and Bajaj S (2014) Evaluation of salivary and serum lipid peroxidation, and glutathione in oral leukoplakia and oral squamous cell carcinoma. J Oral Sci, 56(2): 135-42. [DOI:10.2334/josnusd.56.135] [PMID]
31. Shetty SR, Babu S, Kumari S, et al. (2014) Status of salivary lipid peroxidation in oral cancer and precancer. Indian J Med Paediatr Oncol, 35(2): 156-8. [DOI:10.4103/0971-5851.138990] [PMID] []
32. Gupta S, Singh KK, Vyas VJ, et al. (2000) Assessment of oxidative stress and effect of antioxidant supplementation during radiotherapy in carcinoma of upper digestive tract. Indian J Clin Biochem, 15(1): 52-5. [DOI:10.1007/BF02873549] [PMID] []
33. Müller W, Fiebich BL, Stratz T (2006) New treatment options using 5-HT3 receptor antagonists in rheumatic diseases. Curr Top Med Chem, 6(18): 2035-42. [DOI:10.2174/156802606778522122] [PMID]
34. Fiebich BL, Akundi RS, Lieb K, et al. (2004) Antiinflammatory effects of 5-HT3 receptor antagonists in lipopolysaccharide-stimulated primary human monocytes. Scand J Rheumatol, 33(119): 28-32. [DOI:10.1080/03009740410006998]
35. Stratz C, Bhatia HS, Akundi RS, et al. (2012) The anti-inflammatory effects of the 5-HT₃ receptor antagonist tropisetron are mediated by the inhibition of p38 MAPK activation in primary human monocytes. Int Immunopharmacol, 13(4): 398-402. [DOI:10.1016/j.intimp.2012.05.013] [PMID]
36. Singh V, Gupta D, Arora R (2015) NF-κB as a key player in regulation of cellular radiation responses and identification of radiation countermeasures. Discoveries (Craiova), 3(1): e35. [DOI:10.15190/d.2015.27] [PMID] []
37. Baeuerle PA and Henkel T (1994) Function and activation of NF-kappa B in the immune system. Annu Rev Immunol, 12: 141-79. [DOI:10.1146/annurev.iy.12.040194.001041] [PMID]
38. Barnes PJ and Karin M (1997) Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med, 336(15): 1066-71. [DOI:10.1056/NEJM199704103361506] [PMID]
39. Karin M, Cao Y, Greten FR, Li ZW (2002) NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer, 2(4): 301-10. [DOI:10.1038/nrc780] [PMID]
40. Bours V, Bonizzi G, Bentires-Alj M, et al. (2000) NF-kappaB activation in response to toxical and therapeutical agents: role in inflammation and cancer treatment. Toxicology, 153(1-3): 27-38. [DOI:10.1016/S0300-483X(00)00302-4]
41. Son Y, Yang M, Kang S, et al. (2015) Cranial irradiation regulates CREB-BDNF signaling and variant BDNF transcript levels in the mouse hippocampus. Neurobiol Learn Mem, 121: 12-9. [DOI:10.1016/j.nlm.2015.03.002] [PMID]
42. Han M, Ban JJ, Bae JS (2017) UV irradiation to mouse skin decreases hippocampal neurogenesis and synaptic protein expression via HPA axis activation. Sci Rep, 7: 15574. [DOI:10.1038/s41598-017-15773-z] [PMID] []
43. Liang Z, Liu F, Grundke-Iqbal I, et al. (2007) Down-regulation of cAMP-dependent protein kinase by over-activated calpain in Alzheimer disease brain. J Neurochem, 103(6): 2462-70. [DOI:10.1111/j.1471-4159.2007.04942.x] [PMID] []
44. Teich AF, Nicholls RE, Puzzo D, et al. (2015) Synaptic therapy in Alzheimer's disease: a CREB-centric approach. Neurotherapeutics, 12(1): 29-41. [DOI:10.1007/s13311-014-0327-5] [PMID] []
45. Rosa E and Fahnestock M (2015) CREB expression mediates amyloid β-induced basal BDNF downregulation. Neurobiol Aging, 36(8): 2406-13. [DOI:10.1016/j.neurobiolaging.2015.04.014] [PMID]
46. Walton MR and Dragunow I (2000) Is CREB a key to neuronal survival? Trends Neurosci, 23(2): 48-53. [DOI:10.1016/S0166-2236(99)01500-3] [PMID]
47. Yan X, Liu J, Ye Z, et al. (2016) CaMKII-mediated CREB phosphorylation is involved in Ca2+-induced BDNF mRNA transcription and neurite outgrowth promoted by electrical stimulation. PLoS One, 11(9): e0162784. [DOI:10.1371/journal.pone.0162784] [PMID] []
48. Costescu M, Paunescu H, Coman OA, et al. (2019) Antidepressant effect of the interaction of fluoxetine with granisetron. Exp Ther Med, 18(6): 5108-5111. [DOI:10.3892/etm.2019.8141] [PMID] []
49. Pallavi P, Sagar R, Mehta M, et al. (2013) Serum neurotrophic factors in adolescent depression: gender difference and correlation with clinical severity. J. Affect. Disord, 150: 415-423. [DOI:10.1016/j.jad.2013.04.033] [PMID]
50. Lee J, Lee KH, Kim SH, et al. (2020) Early changes of serum BDNF and SSRI response in adolescents with major depressive disorder. J Affect Disord, 265: 325-332. [DOI:10.1016/j.jad.2020.01.045] [PMID]
51. Bajjalieh S, Frantz G, Weimann J, et al. (1994) Differential expression of synaptic vesicle protein 2 (SV2) isoforms. J Neurosci, 14: 5223-5235. [DOI:10.1523/JNEUROSCI.14-09-05223.1994] [PMID] []
52. Lepeta K, Lourenco MV, Schweitzer BC, et al. (2016) Synaptopathies: synaptic dysfunction in neurological disorders - a review from students to students. J Neurochem, 138: 785-805. [DOI:10.1111/jnc.13713] [PMID] []
53. Stockburger C, Miano D, Baeumlisberger M, et al. (2016) A mitochondrial role of SV2a protein in aging and alzheimer's disease: Studies with Levetiracetam. J Alzheimers Dis, 50(1): 201-15. [DOI:10.3233/JAD-150687] [PMID]
54. Kislinger T, Cox B, Kannan A, et al. (2006) Global survey of organ and organelle protein expression in mouse: combined proteomic and transcriptomic profiling. Cell, 125: 173−186. [DOI:10.1016/j.cell.2006.01.044] [PMID]
55. Feng G, Xiao F, Lu Y, et al. (2009) Down-regulation of synaptic vesicle protein 2A in the anterior temporal neocortex of patients with intractable epilepsy. J Mol Neurosci, 39: 354−359. [DOI:10.1007/s12031-009-9288-2] [PMID]
56. Gorter JA, van Vliet EA, Aronica E, et al. (2006) Potential new antiepileptogenic targets indicated by microarray analysis in a rat model for temporal lobe epilepsy. J Neurosci, 26: 11083−11110. [DOI:10.1523/JNEUROSCI.2766-06.2006] [PMID] []
57. Shi J, Zhou F, Wang LK, Wu GF (2015) Synaptic vesicle protein 2A decreases in amygdaloid kindling pharmacoresistant epileptic rats. J Huazhong Univ Sci Technol Med Sci, 35: 716−722. [DOI:10.1007/s11596-015-1496-0] [PMID]
58. van Vliet EA, Aronica E, Redeker S, et al. (2009) Decreased expression of synaptic vesicle protein 2A, the binding site for levetiracetam, during epileptogenesis and chronic epilepsy. Epilepsia, 50: 422−433. [DOI:10.1111/j.1528-1167.2008.01727.x] [PMID]
59. Burns TC, Awad AJ, et al. (2016) Radiation-induced brain injury: low-hanging fruit for neuroregeneration. Neurosurg Focus, 40(5): E3. [DOI:10.3171/2016.2.FOCUS161] [PMID]
60. Jayamohananan H, Kumar MKM, Aneesh TP (2019) 5-HIAA as a Potential Biological Marker for Neurological and Psychiatric Disorders. Adv Pharm Bull, 9(3): 374-381. [DOI:10.15171/apb.2019.044] [PMID] []
61. Nguyen H, Wang H, le T, et al. (2008) Downregulated hypothalamic 5-HT3 receptor expression and enhanced 5-HT3 receptor antagonist-mediated improvement in fatigue-like behaviour in cholestatic rats. Neurogastroenterol Motil, 20(3): 228-35. [DOI:10.1111/j.1365-2982.2007.01016.x] [PMID]
62. Celik T, Gören MZ, Cinar K, et al. (2005) Fatigue of cholestasis and the serotoninergic neurotransmitter system in the rat. Hepatology, 41(4): 731-7. [DOI:10.1002/hep.20617] [PMID]
63. Mabbott DJ, Spiegler BJ, Greenberg ML, et al. (2005) Serial evaluation of academic and behavioral outcome after treatment with cranial radiation in childhood. J Clin Oncol, 23: 2256-2263. [DOI:10.1200/JCO.2005.01.158] [PMID]
64. Merchant TE, Conklin HM, Wu S, et al. (2009) Late effects of conformal radiation therapy for pediatric patients with low-grade glioma: prospective evaluation of cognitive, endocrine, and hearing deficits. J Clin Oncol, 27: 3691-3697. [DOI:10.1200/JCO.2008.21.2738] [PMID] []
65. Merchant TE, Schreiber JE, Wu S, et al. (2014) Critical combinations of radiation dose and volume predict intelligence quotient and academic achievement scores after craniospinal irradiation in children with medulloblastoma. Int J Radiat Oncol Biol Phys, 90: 554-561. [DOI:10.1016/j.ijrobp.2014.06.058] [PMID] []
66. Davies PA (2011) Allosteric modulation of the 5-HT(3) receptor. Curr Opin Pharmacol, 11(1): 75-80. [DOI:10.1016/j.coph.2011.01.010] [PMID] []
67. Fan P (1994) Facilitation of 5-hydroxytryptamine3 receptor desensitization by fluoxetine. Neuroscience, 62(2): 515-22. [DOI:10.1016/0306-4522(94)90384-0]
68. Fantini J and Barrantes FJ (2009) Sphingolipid/cholesterol regulation of neurotransmitter receptor conformation and function. Biochim Biophys Acta, 1788(11): 2345-61. [DOI:10.1016/j.bbamem.2009.08.016] [PMID]
69. Nicolae I, Nicolae CD, Coman OA, et al. (2011) Serum total gangliosides level: clinical prognostic implication. Rom J Morphol Embryol, 52(4): 1277-81.
70. Snyder JS, Kee N, Wojtowicz JM (2001) Effects of adult neurogenesis on synaptic plasticity in the rat dentate gyrus. J Neurophysiol, 85(6): 2423-2431. [DOI:10.1152/jn.2001.85.6.2423] [PMID]
71. Lee DA, Bedont JL, Pak T, et al. (2012) Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nat Neurosci, 15(5): 700-702. [DOI:10.1038/nn.3079] [PMID] []
72. Damasio AR (1989) Time-locked multiregional retroactivation: a systems-level proposal for the neural substrates of recall and recognition. Cognition, 33(1-2): 25-62. [DOI:10.1016/0010-0277(89)90005-X]
73. Squire LR (1992) Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev, 99(2): 195-231. [DOI:10.1037/0033-295X.99.2.195] [PMID]
74. Takita M, Izaki Y, Jay TM, et al. (1999) Induction of stable longterm depression in vivo in the hippocampal-prefrontal cortex pathway. Eur J Neurosci, 11(11): 4145-4148. [DOI:10.1046/j.1460-9568.1999.00870.x] [PMID]
75. Kagami Y, Shigenobu S, Watanabe S (1992) Neuroprotective effect of 5-HT3 receptor antagonist on ischemia-induced decrease in CA1 field potential in rat hippocampal slices. Eur J Pharmacol, 224(1): 51-6. [DOI:10.1016/0014-2999(92)94817-F]
76. Fakhfouri G, Rahimian R, Daneshmand A, et al. (2010) Granisetron ameliorates acetic acid-induced colitis in rats. Hum Exp Toxicol, 29(4): 321-8. [DOI:10.1177/0960327110362702] [PMID]
77. Maleki-Dizaji N, Eteraf-Oskouei T, Fakhrjou A, et al. (2010) The effects of 5HT3 receptor antagonist granisetron on inflammatory parameters and angiogenesis in the air-pouch model of inflammation. Int Immunopharmacol, 10(9): 1010-6. [DOI:10.1016/j.intimp.2010.05.013] [PMID]
78. Rahimian R, Fakhfouri G, Ejtemaei Mehr S, et al. (2013) Tropisetron attenuates amyloid-beta-induced inflammatory and apoptotic responses in rats. Eur J Clin Invest, 43(10): 1039-51. [DOI:10.1111/eci.12141] [PMID]
79. Chugh Y, Saha N, Sankaranarayanan A, Sharma PL (1991) Memory enhancing effects of granisetron (BRL 43694) in a passive avoidance task. Eur J Pharmacol, 203(1): 121-3. [DOI:10.1016/0014-2999(91)90799-V]
80. Ohno M and Watanabe S (1997) Differential effects of 5-HT3 receptor antagonism on working memory failure due to deficiency of hippocampal cholinergic and glutamatergic transmission in rats. Brain Res, 762(1-2): 211-5. [DOI:10.1016/S0006-8993(97)00448-4]
81. Boast C, Bartolomeo AC, Morris H, Moyer JA (1999) 5HT antagonists attenuate MK801-impaired radial arm maze performance in rats. Neurobiol Learn Mem, 71(3): 259-71. [DOI:10.1006/nlme.1998.3886] [PMID]
82. Tsutsui K and Haraguchi S (2020) Neuroprotective actions of cerebellar and pineal allopregnanolone on Purkinje cells. FASEB Bioadv, 2(3): 149-159. [DOI:10.1096/fba.2019-00055] [PMID] []
83. Sakamoto H, Ukena K, Tsutsui K (2001) Effects of progesterone synthesized de novo in the developing Purkinje cell on its dendritic growth and synaptogenesis. J Neurosci, 21(16): 6221-32. [DOI:10.1523/JNEUROSCI.21-16-06221.2001] [PMID] []
84. Merchant TE, Sharma S, Xiong X, et al. (2014) Effect of cerebellum radiation dosimetry on cognitive outcomes in children with infratentorial ependymoma. Int J Radiat Oncol Biol Phys, 90(3): 547-53. [DOI:10.1016/j.ijrobp.2014.06.043] [PMID] []
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Cini N, Atasoy O, Erdogan M, Yaprak G, Eroglu E, Sirin C, et al . Investigation of the neuroprotective effect of Granisetron through SV2A and 5-HT3 modulation in a radiation-induced brain injury rat model. Int J Radiat Res 2023; 21 (3) :435-446
URL: http://ijrr.com/article-1-4855-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 21, Issue 3 (6-2023) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.06 seconds with 50 queries by YEKTAWEB 4652