[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 21, Issue 3 (6-2023) ::
Int J Radiat Res 2023, 21(3): 469-474 Back to browse issues page
Four-dimensional dose reconstruction system for lung cancer VMAT treatment: a 4D phantom study
M. Hashimoto , Y. Ito , Y. Tanaka , M. Nakano
Department of Radiation Oncology, Kitasato University School of Medicine, Sagamihara-shi, Kanagawa, Japan , mnakano@kitasato-u.ac.jp
Abstract:   (1082 Views)
Background: Recently, volumetric modulated arc therapy (VMAT) has been applied to the treatment of moving targets, such as lung tumors. The displacement of actual tumors during treatment based on an averaged four-dimensional (4D) planning computed tomography (CT) image set induces inconsistencies between dose distribution determined during the treatment planning step and the actual irradiated dose. The present study introduces a 4D dose reconstruction system and demonstrates its feasibility based on the results of dynamic thorax phantom experiments. Materials and Methods: Linear accelerator log files of two types—dynamic beam delivery log files and DynaLog files—were used to create the DICOM-RT Plan file with multiple-field irradiation. Dose distribution corresponding to each respiratory phase was calculated by planning the corresponding CT image set, and the accumulated dose distribution was subsequently reconstructed. In the experiment conducted in this study, two types of lung-tumor motion were considered—linear motion in the craniocaudal direction and combined motion in the craniocaudal and rotational directions. Results: The dose delivered to the center of a tumor was observed to vary by up to 4.4 %, depending on the initiation time of VMAT irradiation—the proposed system estimated the administered dose with an accuracy of 1.3 % or less. In the case of two-dimensional dose distribution, the pass rate of gamma analysis with a tolerance of 3 mm/3 % exceeded 96.6 %. Conclusion: The proposed system exhibited high dose-estimation accuracy for intricately moving targets, e.g., lung tumors, undergoing combined linear and rotational motion.
Keywords: 4D dose reconstruction, lung tumor, VMAT, 4D thorax phantom, respiratory motion.
Full-Text [PDF 985 kb]   (590 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. 1. Otto K (2008) Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys, 35(1): 310-317. [DOI:10.1118/1.2818738] [PMID]
2. Palma DA, Verbakel WFAR, Otto K, Senan S (2010) New developments in arc radiation therapy: a review. Cancer Treat Rev, 36(5): 393-399. [DOI:10.1016/j.ctrv.2010.01.004] [PMID]
3. Teoh M, Clark CH, Wood K, Whitaker S, Nisbet A (2011) Volumetric modulated arc therapy: a review of current literature and clinical use in practice. Br J Radiol, 84: 976-996. [DOI:10.1259/bjr/22373346] [PMID] []
4. Bedford JL (2009) Treatment planning for volumetric modulated arc therapy. Med Phys, 36(11): 5128-5138. [DOI:10.1118/1.3240488] [PMID]
5. Pesce GA, Clivio A, Cozzi L, Nicolini G, Richetti A, Salati E, et al. (2010) Early clinical experience of radiotherapy of prostate cancer with volumetric modulated arc therapy. Radiat Oncol, 5(1): 54. [DOI:10.1186/1748-717X-5-54] [PMID] []
6. Holt A, Van Gestel D, Arends MP, Korevaar EW, Schuring D, Kunze-Busch MC, et al. (2013) Multi-institutional comparison of volumetric modulated arc therapy vs. intensity-modulated radiation therapy for head-and-neck cancer: a planning study. Radiat Oncol, 8(1): 26. [DOI:10.1186/1748-717X-8-26] [PMID] []
7. Verbakel WFAR, Cuijpers JP, Hoffmans D, Bieker M, Slotman BJ, Senan S (2009) Volumetric intensity-modulated arc therapy vs. conventional IMRT in head-and-neck cancer: a comparative planning and dosimetric study. Int J Radiat Oncol Biol Phys, 74(1): 252-259. [DOI:10.1016/j.ijrobp.2008.12.033] [PMID]
8. Holt A, van Vliet-Vroegindeweij C, Mans A, Belderbos JS, Damen EMF (2011) Volumetric-modulated arc therapy for stereotactic body radiotherapy of lung tumors: a comparison with intensity-modulated radiotherapy techniques. Int J Radiat Oncol Biol Phys, 81(5): 1560-1567. [DOI:10.1016/j.ijrobp.2010.09.014] [PMID]
9. Navarria P, Ascolese AM, Mancosu P, Alongi F, Clerici E, Tozzi A, et al. (2013) Volumetric modulated arc therapy with flattening filter free (FFF) beams for stereotactic body radiation therapy (SBRT) in patients with medically inoperable early stage non small cell lung cancer (NSCLC). Radiother Oncol, 107(3): 414-418. [DOI:10.1016/j.radonc.2013.04.016] [PMID]
10. Wolthaus JWH, Schneider C, Sonke J-J, van Herk M, Belderbos JSA, Rossi MMG, et al. (2006) Mid-ventilation CT scan construction from four-dimensional respiration-correlated CT scans for radiotherapy planning of lung cancer patients. Int J Radiat Oncol, 65(5): 1560-1571. [DOI:10.1016/j.ijrobp.2006.04.031] [PMID]
11. Knopf A, Nill S, Yohannes I, Graeff C, Dowdell S, Kurz C, et al. (2014) Challenges of radiotherapy: Report on the 4D treatment planning workshop 2013. Phys Medica, 30(7): 809-815. [DOI:10.1016/j.ejmp.2014.07.341] [PMID]
12. Huang L, Park K, Boike T, Lee P, Papiez L, Solberg T, et al. (2010) A study on the dosimetric accuracy of treatment planning for stereotactic body radiation therapy of lung cancer using average and maximum intensity projection images. Radiother Oncol, 96(1): 48-54. [DOI:10.1016/j.radonc.2010.04.003] [PMID]
13. Berbeco RI, Pope CJ, Jiang SB. Measurement of the interplay effect in lung IMRT treatment using EDR2 films. J Appl Clin Med Phys, 7(4): 33-42. [DOI:10.1120/jacmp.v7i4.2222] [PMID] []
14. Ong C, Verbakel WFAR, Cuijpers JP, Slotman BJ, Senan S (2011) Dosimetric Impact of Interplay Effect on RapidArc Lung Stereotactic Treatment Delivery. Int J Radiat Oncol, 79(1): 305-311. [DOI:10.1016/j.ijrobp.2010.02.059] [PMID]
15. Rao M, Wu J, Cao D, Wong T, Mehta V, Shepard D, et al. (2012) Dosimetric impact of breathing motion in lung stereotactic body radiotherapy treatment using image-modulated radiotherapy and volumetric modulated arc therapy. Int J Radiat Oncol Biol Phys, 83(2): e251-e256. [DOI:10.1016/j.ijrobp.2011.12.001] [PMID]
16. Stambaugh C, Nelms BE, Dilling T, Stevens C, Latifi K, Zhang G, et al. (2013) Experimentally studied dynamic dose interplay does not meaningfully affect target dose in VMAT SBRT lung treatments. Med Phys, 40(9): 91710. [DOI:10.1118/1.4818255] [PMID]
17. van Zijtveld M, Dirkx MLP, de Boer HCJ, Heijmen BJM (2007) 3D dose reconstruction for clinical evaluation of IMRT pretreatment verification with an EPID. Radiother Oncol, 82(2): 201-207. [DOI:10.1016/j.radonc.2006.12.010] [PMID]
18. Poulsen PR, Schmidt ML, Keall P, Worm ES, Fledelius W, Hoffmann L (2012) A method of dose reconstruction for moving targets compatible with dynamic treatments. Med Phys, 39(10): 6237-6246. [DOI:10.1118/1.4754297] [PMID] []
19. Nakagawa K, Haga A, Kida S, Masutani Y, Yamashita H, Takahashi W, et al. (2013) 4D registration and 4D verification of lung tumor position for stereotactic volumetric modulated arc therapy using respiratory-correlated cone-beam CT. J Radiat Res, 54(1): 152-156. [DOI:10.1093/jrr/rrs058] [PMID] []
20. Nakagawa K, Haga A, Sasaki K, Kida S, Masutani Y, Yamashita H, et al. (2014) Lung tumor motion reproducibility for five patients who received four-fraction VMAT stereotactic ablative body radiotherapy under constrained breathing conditions: a preliminary study. J Radiat Res, 55(6): 1199-1201. [DOI:10.1093/jrr/rru055] [PMID] []
21. Saitoh H (2013) Advance in dose standard and dosimetry protocol for external beam radiation therapy. Igaku Butsuri, 33(suppl.2): 1-12.
22. Childress NL, Rosen II (2004) Effect of processing time delay on the dose response of Kodak EDR2 film. Med Phys, 31(8): 2284. [DOI:10.1118/1.1774111] [PMID]
23. Childress NL, Salehpour M, Dong L, Bloch C, White RA, Rosen II (2005) Dosimetric accuracy of Kodak EDR2 film for IMRT verifications. Med Phys, 32(2): 539. [DOI:10.1118/1.1852791] [PMID]
24. Shi C, Papanikolaou N, Yan Y, Weng X, Jiang H (2006) Analysis of the sources of uncertainty for EDR2 film-based IMRT quality assurance. J Appl Clin Med Phys, 7(2): 1-8. [DOI:10.1120/jacmp.v7i2.2230] [PMID] []
25. Lee L, Le QT, Xing L (2008) Retrospective IMRT Dose Reconstruction Based on Cone-Beam CT and MLC Log-File. Int J Radiat Oncol Biol Phys, 70(2): 634-644. [DOI:10.1016/j.ijrobp.2007.09.054] [PMID]
26. van Zijtveld M, Dirkx M, Heijmen B (2007) Correction of conebeam CT values using a planning CT for derivation of the "dose of the day." Radiother Oncol, 85(2): 195-200. [DOI:10.1016/j.radonc.2007.08.010] [PMID]
27. Kida S, Masutani Y, Yamashita H, Imae T, Matsuura T, Saotome N, et al. (2012) In-treatment 4D cone-beam CT with image-based respiratory phase recognition. Radiol Phys Technol, 5(2): 138-147. [DOI:10.1007/s12194-012-0146-5] [PMID]
28. 28 Nenoff L, Ribeiro CO, Matter M, Hafner L, Josipovic M, Langendijk JA, et al. (2020) Deformable image registration uncertainty for inter-fractional dose accumulation of lung cancer proton therapy. Radiother Oncol, 147: 178-185. [DOI:10.1016/j.radonc.2020.04.046] [PMID]
29. 29 Lowther NJ, Marsh SH, Louwe RJW (2020) Quantifying the dose accumulation uncertainty after deformable image registration in head-and-neck radiotherapy. Radiother Oncol, 143: 117-125. [DOI:10.1016/j.radonc.2019.12.009] [PMID]
30. 30 Bai X, Wang B, Wang S, Wu Z, Gou C, Hou Q (2020) Radiotherapy dose distribution prediction for breast cancer using deformable image registration. Biomed Eng Online 19(1): 3. [DOI:10.1186/s12938-020-00783-2] [PMID] []
31. 31 Lin MH, Li J, Wang L, Koren S, Fan J, Forkal E, Ma CM (2012) 4D patient dose reconstruction using online measured EPID cine images for lung SBRT treatment validation. Med Phys, 39(10): 5949-5958. [DOI:10.1118/1.4748505] [PMID]
32. 32 Meijers A, Knopf AC, Crijns AP, Ubbels JF, Niezink AG, Langendijk JA, et al. (2020) Evaluation of interplay and organ motion effects by means of 4D dose reconstruction and accumulation. Radiother Oncol, 150: 268-274. [DOI:10.1016/j.radonc.2020.07.055] [PMID]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hashimoto M, Ito Y, Tanaka Y, Nakano M. Four-dimensional dose reconstruction system for lung cancer VMAT treatment: a 4D phantom study. Int J Radiat Res 2023; 21 (3) :469-474
URL: http://ijrr.com/article-1-4871-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 21, Issue 3 (6-2023) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 48 queries by YEKTAWEB 4652