[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 21, Issue 4 (10-2023) ::
Int J Radiat Res 2023, 21(4): 733-743 Back to browse issues page
Neuroprotective effect of polyethylene Glycol (PEG-3350) on radiation-induced brain injury via membrane stabilization
I.H. Sever , B. Ozkul , O. Atasoy , N. Cini , M.F. Bozkurt , M.A. Erdogan , G. Yaprak , O. Erbas
Izmir Katip Celebi University, Department of Physiology, Izmir, Turkey , alpero86@gmail.com
Abstract:   (787 Views)
Background: This research aims to evaluate whether polyethylene glycol (PEG), which can immediately repair neuronal membranes, will have a protective effect against radiation-induced brain injury (RIBI). Materials and Methods: Whole brain irradiation (RAD) procedure was performed on 14 of 21 rats included in the study for establishing RIBI. Rats were randomly divided into three groups containing equal numbers of animals: control (RAD not established), placebo (RAD applied, and treated with 1 ml/kg/day of saline that was administered intraperitoneally), and treatment (RAD applied, and treated with 30 mg/kg /day of PEG 3350 that was administered intraperitoneally). Following the end of the 22-day treatments, behavioral tests were performed first, and then magnetic resonance spectroscopy (MRS) was applied to measure brain lactate levels. All rats were sacrificed in order to perform biochemical analysis and histopathological examination of brain tissue. Results: Compared to the control group, MDA, TNF-α, NF-κB and lactate levels were significantly increased, while BDNF levels were decreased in the placebo group; and RAD-induced changes in all these biochemical markers were reversed by PEG. In MRS performed from the corpus striatum, there was an evident decrease in lactate levels after PEG treatment. Impairment in memory and learning was more limited in PEG-treated rats than in the rats receiving saline therapy. Furthermore, histological examinations from hippocampus and cerebellum exhibited that PEG treatment significantly reduces apoptosis, astrogliosis, and oxidative DNA damage in rats. Conclusion: Our results support that PEG is very effective in preventing RIBI with its secondary effects on the basis of membrane stabilization.
Keywords: Radiation, PEG-3350, MRS, 8-oxo-dG, BDNF, membrane stabilization.
Full-Text [PDF 1233 kb]   (455 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. Makale MT, McDonald CR, Hattangadi-Gluth JA, Kesari S (2017) Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours. Nat Rev Neurol, 13: 52-64. [DOI:10.1038/nrneurol.2016.185] [PMID] []
2. Johannesen TB, Lien HH, Hole KH, Lote K (2000) Radiological and clinical assessment of long-term brain tumour survivors after radiotherapy. Radiother Oncol, 69: 169-76. [DOI:10.1016/S0167-8140(03)00192-0] [PMID]
3. Brown PD, Pugh S, Laack NN, et al. Radiation Therapy Oncology Group (RTOG) (2013) Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: a randomized, double-blind, placebo-controlled trial. Neuro Oncol, 15: 1429-37. [DOI:10.1093/neuonc/not114] [PMID] []
4. Cole AM, Scherwath A, Ernst G, et al. (2013) Self-reported cognitive outcomes in patients with brain metastases before and after radiation therapy. Int J Radiat Oncol Biol Phys, 87: 705-12. [DOI:10.1016/j.ijrobp.2013.07.037] [PMID]
5. Beltran C, Naik M, Merchant TE (2010) Dosimetric effect of target expansion and setup uncertainty during radiation therapy in pediatric craniopharyngioma. Radiother Oncol, 97: 399-403. [DOI:10.1016/j.radonc.2010.10.017] [PMID]
6. Béhin A and Delattre JY (2004) Complications of radiation therapy on the brain and spinal cord. Semin Neurol, 24: 405-17. [DOI:10.1055/s-2004-861535] [PMID]
7. Gorman AM, McGowan A, O'Neill C, Cotter T (1996) Oxidative stress and apoptosis in neurodegeneration. J Neurol Sci, 139: 45-52. [DOI:10.1016/0022-510X(96)00097-4] [PMID]
8. Sezen O, Ertekin MV, Demircan B, et al. (2008) Vitamin E and L-carnitine, separately or in combination, in the prevention of radiation-induced brain and retinal damages. Neurosurg Rev, 31: 205-13. [DOI:10.1007/s10143-007-0118-0] [PMID]
9. Steen RG, Spence D, Wu S, et al. (2001) Effect of therapeutic ionizing radiation on the human brain. Ann Neurol, 50: 787-95. [DOI:10.1002/ana.10029] [PMID]
10. Schnegg CI, Kooshki M, Hsu FC, et al. (2012) PPARδ prevents radiation-induced proinflammatory responses in microglia via transrepression of NF-κB and inhibition of the PKCα/MEK1/2/ERK1/2/AP-1 pathway. Free Radic Biol Med, 52: 1734-43. [DOI:10.1016/j.freeradbiomed.2012.02.032] [PMID] []
11. Liu JL, Tian DS, Li ZW, et al. (2010) Tamoxifen alleviates irradiation-induced brain injury by attenuating microglial inflammatory response in vitro and in-vivo. Brain Res, 1316: 101-11. [DOI:10.1016/j.brainres.2009.12.055] [PMID]
12. Zhao W and Robbins ME (2009) Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications. Curr Med Chem, 16: 130-43. [DOI:10.2174/092986709787002790] [PMID]
13. Kale A, Piskin Ö, Bas Y, et al. (2018) Neuroprotective effects of Quercetin on radiation-induced brain injury in rats. J Radiat Res, 59: 404-410. [DOI:10.1093/jrr/rry032] [PMID] []
14. Hur W and Yoon SK (2017) Molecular Pathogenesis of Radiation-Induced Cell Toxicity in Stem Cells. Int J Mol Sci, 18: 2749. [DOI:10.3390/ijms18122749] [PMID] []
15. Angelova PR and Abramov AY (2016) Functional role of mitochondrial reactive oxygen species in physiology. Free Radic Biol Med, 100: 81-85. [DOI:10.1016/j.freeradbiomed.2016.06.005] [PMID]
16. Berezhnaya E, Neginskaya M, Uzdensky AB, Abramov AY (2018) Photo-ınduced oxidative stress ımpairs mitochondrial metabolism in neurons and astrocytes. Mol Neurobiol, 55: 90-95. [DOI:10.1007/s12035-017-0720-2] [PMID] []
17. Newton J, Brown T, Corley C, et al. (2020) Cranial irradiation impairs juvenile social memory and modulates hippocampal physiology. Brain Res, 1748: 147095. [DOI:10.1016/j.brainres.2020.147095] [PMID] []
18. Casciati A, Dobos K, Antonelli F, et al. (2016) Age-related effects of X-ray irradiation on mouse hippocampus. Oncotarget, 7: 28040-58. [DOI:10.18632/oncotarget.8575] [PMID] []
19. Sharma NK, Stone S, Kumar VP, et al. (2019) Mitochondrial degeneration and autophagy associated with delayed effects of radiation in the mouse brain. Front Aging Neurosci, 11: 357. [DOI:10.3389/fnagi.2019.00357] [PMID] []
20. Koenig MK (2008) Presentation and diagnosis of mitochondrial disorders in children. Pediatr Neurol, 38: 305-13. [DOI:10.1016/j.pediatrneurol.2007.12.001] [PMID] []
21. Katsura M, Sato J, Akahane M, et al. (2021) Recognizing Radiation-induced Changes in the Central Nervous System: Where to Look and What to Look For. Radiographics, 41: 224-248. [DOI:10.1148/rg.2021200064] [PMID]
22. Bonsi P, Cuomo D, Martella G, et al. (2006) Mitochondrial toxins in Basal Ganglia disorders: from animal models to therapeutic strategies. Curr Neuropharmacol, 4: 69-75. [DOI:10.2174/157015906775203039] [PMID] []
23. Lin MT and Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 443: 787-95. [DOI:10.1038/nature05292] [PMID]
24. Tretter L, Sipos I, Adam-Vizi V (2004) Initiation of neuronal damage by complex I deficiency and oxidative stress in Parkinson's disease. Neurochem Res, 29: 569-77. [DOI:10.1023/B:NERE.0000014827.94562.4b] [PMID]
25. Pfefferbaum A, Adalsteinsson E, Sullivan EV (2004) In-vivo structural imaging of the rat brain with a 3-T clinical human scanner. J Magn Reson Imaging, 20: 779-85. [DOI:10.1002/jmri.20181] [PMID]
26. Yang YM, Feng X, Yao ZW, et al. (2008) Magnetic resonance angiography of carotid and cerebral arterial occlusion in rats using a clinical scanner. J Neurosci Methods, 167: 176-83. [DOI:10.1016/j.jneumeth.2007.08.005] [PMID]
27. Aradi M, Steier R, Bukovics P, et al. (2011) Quantitative proton MRI and MRS of the rat brain with a 3T clinical MR scanner. J Neuroradiol, 38: 90-7. [DOI:10.1016/j.neurad.2009.11.003] [PMID]
28. Dong X, Luo M, Huang G, et al. (2015) Relationship between irradiation-induced neuro-inflammatory environments and impaired cognitive function in the developing brain of mice. Int J Radiat Biol, 91: 224-39. [DOI:10.3109/09553002.2014.988895] [PMID]
29. Raju U, Gumin GJ, Tofilon PJ (2000) Radiation-induced transcription factor activation in the rat cerebral cortex. Int J Radiat Biol, 76: 1045-53. [DOI:10.1080/09553000050111514] [PMID]
30. Hwang SY, Jung JS, Kim TH, et al. (2006) Ionizing radiation induces astrocyte gliosis through microglia activation. Neurobiol Dis, 21: 457-67. [DOI:10.1016/j.nbd.2005.08.006] [PMID]
31. Yang L, Yang J, Li G, et al. (2017) Pathophysiological Responses in Rat and Mouse Models of Radiation-Induced Brain Injury. Mol Neurobiol, 54: 1022-1032. [DOI:10.1007/s12035-015-9628-x] [PMID] []
32. Zhou K, Boström M, Ek CJ, et al. (2017) Radiation induces progenitor cell death, microglia activation, and blood-brain barrier damage in the juvenile rat cerebellum. Sci Rep, 7: 46181. [DOI:10.1038/srep46181] [PMID] []
33. Sándor N, Walter FR, Bocsik A, et al. (2014) Low dose cranial irradiation-induced cerebrovascular damage is reversible in mice. PLoS One, 9(11): e112397. [DOI:10.1371/journal.pone.0112397] [PMID] []
34. Ralcewicz TA and Persaud TV (1995) Effects of prenatal exposure to low dose ionizing radiation on the development of the cerebellar cortex in the rat. Histol Histopathol, 10: 371-83.
35. Raber J, Rola R, LeFevour A, et al. (2004) Radiation-induced cognitive impairments are associated with changes in indicators of hippocampal neurogenesis. Radiat Res, 162: 39-47. [DOI:10.1667/RR3206] [PMID]
36. Rola R, Raber J, Rizk A, et al. (2004) Radiation-induced impairment of hippocampal neurogenesis is associated with cognitive deficits in young mice. Exp Neurol, 188: 316-30. [DOI:10.1016/j.expneurol.2004.05.005] [PMID]
37. Georg Kuhn H and Blomgren K (2011) Developmental dysregulation of adult neurogenesis. Eur J Neurosci, 33: 1115-22. [DOI:10.1111/j.1460-9568.2011.07610.x] [PMID]
38. Turecek PL, Bossard MJ, Schoetens F, Ivens IA (2016) PEGylation of Biopharmaceuticals: A Review of chemistry and nonclinical safety ınformation of approved drugs. J Pharm Sci, 105: 460-475. [DOI:10.1016/j.xphs.2015.11.015] [PMID]
39. Ivens IA, Achanzar W, Baumann A, et al. (2015) PEGylated Biopharmaceuticals: Current experience and considerations for nonclinical development. Toxicol Pathol, 43: 959-83. [DOI:10.1177/0192623315591171] [PMID]
40. Pasut G, Panisello A, Folch-Puy E, et al. (2016) Polyethylene glycols: An effective strategy for limiting liver ischemia reperfusion injury. World J Gastroenterol, 22: 6501-8. [DOI:10.3748/wjg.v22.i28.6501] [PMID] []
41. Juarez-Moreno K, Ayala M, Vazquez-Duhalt R (2015) Antioxidant capacity of poly(Ethylene Glycol) (PEG) as protection mechanism against hydrogen peroxide ınactivation of peroxidases. Appl Biochem Biotechnol, 177: 1364-73. [DOI:10.1007/s12010-015-1820-y] [PMID]
42. Luo J, Borgens R, Shi R (2002) Polyethylene glycol immediately repairs neuronal membranes and inhibits free radical production after acute spinal cord injury. J Neurochem, 83: 471-80. [DOI:10.1046/j.1471-4159.2002.01160.x] [PMID]
43. Ferrero-Andrés A, Panisello-Roselló A, Serafín A, et al. (2020) Polyethylene glycol 35 (PEG35) protects against ınflammation in experimental acute necrotizing pancreatitis and associated lung ınjury. Int J Mol Sci, 21: 917. [DOI:10.3390/ijms21030917] [PMID] []
44. Ackland GL, Gutierrez Del Arroyo A, Yao ST, et al. (2010) Low-molecular-weight polyethylene glycol improves survival in experimental sepsis. Crit Care Med, 38: 629-36. [DOI:10.1097/CCM.0b013e3181c8fcd0] [PMID]
45. Chen H, Quick E, Leung G, et al. (2009) Polyethylene glycol protects injured neuronal mitochondria. Pathobiology, 76: 117-28. [DOI:10.1159/000209389] [PMID]
46. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals (2011) Guide for the Care and Use of Laboratory Animals. 8th ed. Washington (DC): National Academies Press (US).
47. Ji S, Tian Y, Lu Y, et al. (2014) Irradiation-induced hippocampal neurogenesis impairment is associated with epigenetic regulation of bdnf gene transcription. Brain Res, 1577: 77-88. [DOI:10.1016/j.brainres.2014.06.035] [PMID]
48. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72: 248-54. [DOI:10.1016/0003-2697(76)90527-3] [PMID]
49. Guo C, Li X, Wang R, et al. (2016) Association between oxidative DNA damage and risk of colorectal cancer: Sensitive determination of urinary 8-Hydroxy-2'-deoxyguanosine by UPLC-MS/MS Analysis. Sci Rep, 6: 32581. [DOI:10.1038/srep32581] [PMID] []
50. Gao Y, Wang P, Wang Z, et al. (2019) Serum 8-Hydroxy-2'-Deoxyguanosine Level as a Potential Biomarker of Oxidative DNA Damage Induced by Ionizing Radiation in Human Peripheral Blood. Dose Response, 17: 1559325818820649. [DOI:10.1177/1559325818820649] [PMID] []
51. Shi R and Borgens RB (2000) Anatomical repair of nerve membranes in crushed mammalian spinal cord with polyethylene glycol. J Neurocytol, 29: 633-43. [DOI:10.1023/A:1010879219775] [PMID]
52. Luo J, Borgens R, Shi R (2004) Polyethylene glycol improves function and reduces oxidative stress in synaptosomal preparations following spinal cord injury. J Neurotrauma, 21: 994-1007. [DOI:10.1089/0897715041651097] [PMID]
53. Lenaz G, Bovina C, D'Aurelio M, et al. (2002) Role of mitochondria in oxidative stress and aging. Ann N Y Acad Sci, 959: 199-213. [DOI:10.1111/j.1749-6632.2002.tb02094.x] [PMID]
54. Halliwell B and Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, 1-897.
55. Chen H and Shi R (2004) Polyethylene glycol improves function of isolated brain mitochondria: implication in central nervous system trauma. J Neurotrauma, 21: 1303.
56. Halliwell B and Chirico S (1993) Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr, 57: 715-724. [DOI:10.1093/ajcn/57.5.715S] [PMID]
57. de Souza-Pinto NC, Eide L, Hogue BA, et al. (2001) Repair of 8-oxodeoxyguanosine lesions in mitochondrial dna depends on the oxoguanine dna glycosylase (OGG1) gene and 8-oxoguanine accumulates in the mitochondrial dna of OGG1-defective mice. Cancer Res, 61: 5378-81.
58. Valavanidis A, Vlachogianni T, Fiotakis K, Loridas S (2013) Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. Int J Environ Res Public Health, 10: 3886-907. [DOI:10.3390/ijerph10093886] [PMID] []
59. Lipp LL (2014) Brain perfusion and oxygenation. Crit Care Nurs Clin North Am, 26: 389-98. [DOI:10.1016/j.ccell.2014.04.008] [PMID]
60. Lumniczky K, Szatmári T, Sáfrány G (2017) Ionizing radiation-ınduced ımmune and ınflammatory reactions in the brain. Front Immunol, 8: 517. [DOI:10.3389/fimmu.2017.00517] [PMID] []
61. Fleming JC, Norenberg MD, Ramsay DA, et al. (2006) The cellular inflammatory response in human spinal cords after injury. Brain, 129: 3249-69. [DOI:10.1093/brain/awl296] [PMID]
62. Baptiste DC, Austin JW, Zhao W, et al. (2009) Systemic polyethylene glycol promotes neurological recovery and tissue sparing in rats after cervical spinal cord injury. J Neuropathol Exp Neurol, 68: 661-76. [DOI:10.1097/NEN.0b013e3181a72605] [PMID]
63. Monje ML, Vogel H, Masek M, et al. (2007) Impaired human hippocampal neurogenesis after treatment for central nervous system malignancies. Ann Neurol, 62: 515-20. [DOI:10.1002/ana.21214] [PMID]
64. Balentova S and Adamkov M (2015) Molecular, cellular and functional effects of radiation-ınduced brain ınjury: A review. Int J Mol Sci, 16: 27796-815. [DOI:10.3390/ijms161126068] [PMID] []
65. Beamish CA, Zawaski JA, Inoue T, et al. (2021) NF-κB blockade by NEMO binding domain peptide ameliorates ınflammation and neurobehavioral sequelae after cranial radiation therapy in juvenile mice. Int J Radiat Oncol Biol Phys, 109: 1508-1520. [DOI:10.1016/j.ijrobp.2020.11.067] [PMID]
66. Yang J, Gao J, Han D, et al. (2020) Hippocampal changes in inflammasomes, apoptosis, and MEMRI after radiation-induced brain injury in juvenile rats. Radiat Oncol, 15: 78. [DOI:10.1186/s13014-020-01525-3] [PMID] []
67. Tong F, Zhang J, Liu L, et al. (2016) Corilagin Attenuates Radiation-Induced Brain Injury in Mice. Mol Neurobiol, 53: 6982-6996. [DOI:10.1007/s12035-015-9591-6] [PMID]
68. Greene-Schloesser D, Robbins ME, Peiffer AM, et al. (2012) Radiation-induced brain injury: A review. Front Oncol, 2: 73. [DOI:10.3389/fonc.2012.00073] [PMID] []
69. Burchell VS, Gandhi S, Deas E, et al. (2010) Targeting mitochondrial dysfunction in neurodegenerative disease: Part I. Expert Opin Ther Targets, 14: 369-85. https://doi.org/10.1517/14728221003652489 [DOI:10.1517/14728221003730434] [PMID]
70. Saxton WM, Hollenbeck PJ (2012) The axonal transport of mitochondria. J Cell Sci, 125: 2095-104. [DOI:10.1242/jcs.053850] [PMID] []
71. Jing CH, Wang L, Liu PP, et al. (2012) Autophagy activation is associated with neuroprotection against apoptosis via a mitochondrial pathway in a rat model of subarachnoid hemorrhage. Neuroscience, 213: 144-53. [DOI:10.1016/j.neuroscience.2012.03.055] [PMID]
72. Stansfield WE, Ranek M, Pendse A, et al. (2014) The pathophysiology of cardiac hypertrophy and heart failure. Cell Mol Life Sci, 4: 51-78. [DOI:10.1016/B978-0-12-405206-2.00004-1]
73. Brustovetsky N and Dubinsky JM (2000) Limitations of cyclosporin A inhibition of the permeability transition in CNS mitochondria. J Neurosci, 20: 8229-37. [DOI:10.1523/JNEUROSCI.20-22-08229.2000] [PMID] []
74. Zhang G, Rodemer W, Lee T, et al. (2018) The Effect of axon resealing on retrograde neuronal death after spinal cord ınjury in lamprey. Brain Sci, 8:65. [DOI:10.3390/brainsci8040065] [PMID] []
75. Rodemer W and Selzer ME (2019) Role of axon resealing in retrograde neuronal death and regeneration after spinal cord injury. Neural Regen Res, 14: 399-404. [DOI:10.4103/1673-5374.245330] [PMID] []
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sever I, Ozkul B, Atasoy O, Cini N, Bozkurt M, Erdogan M, et al . Neuroprotective effect of polyethylene Glycol (PEG-3350) on radiation-induced brain injury via membrane stabilization. Int J Radiat Res 2023; 21 (4) :733-743
URL: http://ijrr.com/article-1-5068-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 21, Issue 4 (10-2023) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 48 queries by YEKTAWEB 4657