[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 22, Issue 1 (1-2024) ::
Int J Radiat Res 2024, 22(1): 131-137 Back to browse issues page
Comparative bio-effect of gadolinium with alternative contrast medium of magnesium chloride and zinc oxide nanoparticles on single-strand DNA following exposure to magnetic resonance imaging
R.M. Shaheen , N.N.A. Bt Nik Ab Razak , M.M. Radhi , N. Binti Suardi , M. Mohammed
School of Physics, Universiti Sains Malaysia, 11800, Gelugor, Pulau Pinang, Malaysia , rmoozshahin@yahoo.com
Abstract:   (360 Views)
Background: Gadolinium (Gd) is a widely used MRI contrast agent that improves visibility and aids in accurate diagnosis. However, conflicting reports exist regarding its genotoxic effects. This study investigates the bio-effects of Gd and alternative contrast media, magnesium chloride (MgCl2), and zinc oxide nanoparticles (ZnO NPs) on DNA single-strand breaks. Materials and Methods: In this in-vitro comparative experiment, 12 adult New Zealand rabbits (males aged between 4.5 to 5.5 months, weighing 2.5 to 3.0 kg) were utilized. The rabbits received intravenous injections of different contrast agents, namely Gd (n=3), MgCl2 (n=3), ZnO NPs (n=3), and a control group (n=3). Following this, all the rabbits were subjected to MRI at 1.5 Tesla (T) with an RF of 64 MHz for 20 minutes. The alkaline comet assay assessed the presence of single-strand breaks (SSB). Results: The results of the study revealed a statistically significant increase in DNA SSB in both the Gd (p<0.010) and ZnO NPs (p=0.006) treated groups compared to the normal control group. However, the alternative MgCl2 treatment did not elicit a statistically significant effect on the DNA single-strand compared to the control group (p=0.277). Conclusion: The contrast medium Gd and alternative ZnO NPs were demonstrated to cause significant DNA single-strand breaks, with the Gd causing more damage than ZnO NPs. However, the alternative contrast MgCl2 was safer with no effect on DNA single-strand. This suggests that MgCl2 is more suitable as an alternative contrast media in MRI scanning.
Keywords: Magnetic resonance imaging, gadolinium, magnesium chloride, zinc oxide nanoparticles, DNA single-strand, alkaline comet assay.
Full-Text [PDF 765 kb]   (167 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. 1. Lin SP and Brown JJ (2007) MR contrast agents: Physical and pharmacologic basics. J Magn Reson Imaging, 25(5): 884-899. [DOI:10.1002/jmri.20955]
2. Jalali AH, Mozdarani H, Ghanaati H (2020) The genotoxic effects of contrast enhanced abdominopelvic 3-tesla magnetic resonance imaging on human circulating leucocytes. Eur J Radiol, 129: 109037. [DOI:10.1016/j.ejrad.2020.109037]
3. Jalali AH, Mozdarani H, Ghanaati H (2021) The effect of contrast enhanced abdominopelvic magnetic resonance imaging on expression and methylation level of ATM and AKT genes. Cell J, 23(3): 335-340. [DOI:10.1016/j.ejrad.2020.109037]
4. Suntharalingam S, Mladenov E, Sarabhai T, et al. (2018) Abdominopelvic 1.5-T and 3.0-T MR imaging in healthy volunteers: Relationship to formation of DNA double-strand breaks. Radiology, 288(2): 529-535. [DOI:10.1148/radiol.2018172453]
5. Rinck PA (2019) Magnetic resonance in medicine: A critical introduction. BoD-Books on Demand.
6. Ferris N and Goergen S (2018) Gadolinium contrast medium (MRI contrast agents). Retrieved from Inside Radiology: https://www.insideradiology.com.au/gadolinium-contrast-medium/
7. Garcia J, Liu SZ, Louie AY (2017) Biological effects of MRI contrast agents: Gadolinium retention, potential mechanisms and a role for phosphorus. Philos Trans R Soc A, 375(2107): 20 170-180. [DOI:10.1098/rsta.2017.0180]
8. Cho S, Lee Y, Lee S, et al. (2014) Enhanced cytotoxic and genotoxic effects of gadolinium following ELF-EMF irradiation in human lymphocytes. Drug Chem Toxicol, 37(4): 440-447. [DOI:10.3109/01480545.2013.879662]
9. Fiechter M, Stehli J, Fuchs TA, Dougoud S, et al. (2013) Impact of cardiac magnetic resonance imaging on human lymphocyte DNA integrity. Eur Heart J, 34(30) 2340-2345. [DOI:10.1093/eurheartj/eht184]
10. Reddig A, Fatahi M, Roggenbuck D, et al. (2017) Impact of in-vivo high-field-strength and ultra-high-field-strength MR imaging on DNA double-strand-break formation in human lymphocytes. Radiology, 282(3): 782-789. [DOI:10.1148/radiol.2016160794]
11. Fatahi M, Reddig A, Friebe B, et al. (2016) DNA double-strand breaks and micronuclei in human blood lymphocytes after repeated whole body exposures to 7T magnetic resonance imaging. NeuroImage, 133: 288-293. [DOI:10.1016/j.neuroimage.2016.03.023]
12. Radhi MM, Al-Shimmari HAT, Al-Mulla EAJ, et al. (2017) New Voltammetric Study of MgCl2 as Alternative Contrast Media in MRI Molecular Imaging. Nano Biomed Eng, 9(2): 152-161. [DOI:10.5101/nbe.v9i2.p152-161]
13. Jassim AS, Radhi M, Ali Z (2021) Study zinc oxide nanoparticles solution as an alternative of iodine contrast Medium of CT-Scan Imaging of the Heart, Kidney, and Liver. Ann Rom Soc Cell Biol, 25(6): 8793-8803.
14. Bullarbo M, Mattson H, Broman AK, et al. (2018) Magnesium supplementation and blood pressure in pregnancy: A double-blind randomized multicenter study. J Pregnancy, 2018. [DOI:10.1155/2018/4843159]
15. Mishra PK, Mishra H, Ekielski A, Talegaonkar S, et al. (2017) Zinc oxide nanoparticles: A promising nanomaterial for biomedical applications. Drug Discov Today, 22(12): 1825-1834. [DOI:10.1016/j.drudis.2017.08.006]
16. Mishra T, Mohan M, Chakravarty M, Poddar R (2019) Zinc oxide nanoparticles (ZnONPs) as contrast agent for imaging of animal tissue using swept source optical coherence tomography (SSOCT). Optik, 176: 302-308. [DOI:10.1016/j.ijleo.2018.09.111]
17. Mustafa DA, Al-Shimmari HAT, Radhi MM (2020) Use of MgCl2 nanoparticles as alternative contrast media in magnetic resonance imaging molecular imaging and analyzed by Voltammetric Technique. Nano Biomed Eng, 12(2): 148-152. [DOI:10.5101/nbe.v12i2.p148-152]
18. Ilves M, Palomäki J, Vippola M, et al. (2014) Topically applied ZnO nanoparticles suppress allergen induced skin inflammation but induce vigorous IgE production in the atopic dermatitis mouse model. Part Fibre Toxicol, 11(1): 1-12. [DOI:10.1186/s12989-014-0038-4]
19. Wang B, Feng W, Wang M, et al. (2008) Acute toxicological impact of nano-and submicro-scaled zinc oxide powder on healthy adult mice. J Nanopart Res, 10: 263-276. [DOI:10.1007/s11051-007-9245-3]
20. Valverde M and Rojas E (2009) Environmental and occupational biomonitoring using the Comet assay. Mutat Res Rev Mutat Res, 681(1): 93-109. [DOI:10.1016/j.mrrev.2008.11.001]
21. Boyum A (1986) Separation of leukocytes from blood and bone marrow. Scand J Clin Lab Invest, 21: 77-89.
22. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res, 175(1): 184-191. [DOI:10.1016/0014-4827(88)90265-0]
23. Kaur S, Sangeeta GK, Gautam N (2017) Assessment of radiation-induced DNA damage in human peripheral blood lymphocytes using COMET assay. Int J Life Sci Sci Res, 3(4): 1208-1214. [DOI:10.21276/ijlssr.2017.3.4.17]
24. Lu Y, Fang JQ, Tian L, Jin H (2015) Advanced medical statistics. World Scientific.
25. Naseer S, Aamir M, Mirza MA, et al. (2022) Synthesis of Ni-Ag-ZnO solid solution nanoparticles for photoreduction and antimicrobial applications. RSC Adv, 12(13): 7661-7670. [DOI:10.1039/D2RA00717G]
26. Fuad A, Fibriyanti A, Mufti N, Taufiq A (2017) Effect of precursor concentration ratio on the crystal structure, morphology, and band gap of ZnO nanorods. IOP Conf Ser Mater Sci Eng, 2017. IOP Publishing. [DOI:10.1088/1757-899X/202/1/012074]
27. Yedurkar S, Maurya C, Mahanwar P (2016) Biosynthesis of zinc oxide nanoparticles using ixora coccinea leaf extract-a green approach. Open J Synth Theory Appl, 5(1): 1-14. [DOI:10.4236/ojsta.2016.51001]
28. Garcia O, Romero I, González JE, (2007). Measurements of DNA damage on silver-stained comets using free Internet software. Mutat Res Genet Toxicol Environ Mutagen, 627(2): 186-190. [DOI:10.1016/j.mrgentox.2006.11.007]
29. Yildiz S, Cece H, Kaya I, et al. (2011) Impact of contrast enhanced MRI on lymphocyte DNA damage and serum visfatin level. Clin Biochem, 44(12): 975-979. [DOI:10.1016/j.clinbiochem.2011.05.005]
30. Brand M, Ellmann S, Sommer M, et al. (2015). Influence of cardiac MR imaging on DNA double-strand breaks in human blood lymphocytes. Radiology, 277(2): 406-412. [DOI:10.1148/radiol.2015150555]
31. Yongxing W, Xiaorong W, Zichun H (2000) Genotoxicity of lanthanum (III) and gadolinium (III) in human peripheral blood lymphocytes. Bull Environ Contam Toxicol, 64: 611-616. [DOI:10.1007/s001280000047]
32. White GW, Gibby WA, Tweedle MF (2006) Comparison of Gd (DTPA-BMA)(Omniscan) versus Gd (HP-DO3A)(ProHance) relative to gadolinium retention in human bone tissue by inductively coupled plasma mass spectroscopy. Invest Radiol, 41(3): 272-278. [DOI:10.1097/01.rli.0000186569.32408.95]
33. Morcos S (2008) Extracellular gadolinium contrast agents: Differences in stability. Eur J Radiol, 66(2): 175-179. [DOI:10.1016/j.ejrad.2008.01.025]
34. Weng TI, Chen HJ, Lu CW, et al. (2018) Exposure of macrophages to low-dose gadolinium-based contrast medium: Impact on oxidative stress and cytokines production. Contrast Media Mol Imaging, 2018. [DOI:10.1155/2018/3535769]
35. Sharma V, Singh P, Pandey AK, Dhawan A (2012) Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles. Mutat Res Genet Toxicol Environ Mutagen, 745(1-2): 84-91. [DOI:10.1016/j.mrgentox.2011.12.009]
36. Sharma V, Singh SK, Anderson D, et al. (2011) Zinc oxide nanoparticle induced genotoxicity in primary human epidermal keratinocytes. J Nanosci Nanotechnol, 11(5): 3782-3788. [DOI:10.1166/jnn.2011.4250]
37. Osman IF, Baumgartner A, Cemeli E, et al. (2010) Genotoxicity and cytotoxicity of zinc oxide and titanium dioxide in HEp-2 cells. Nanomedicine, 5(8): 1193-1203. [DOI:10.2217/nnm.10.52]
38. Martínez-Carmona M, Gun'ko Y, Vallet-Regí M (2018) ZnO nanostructures for drug delivery and theranostic applications. Nanomaterials, 8(4): 268. [DOI:10.3390/nano8040268]
39. Sharma H, Kumar K, Choudhary C, et al. (2016) Development and characterization of metal oxide nanoparticles for the delivery of anticancer drug. Artif Cells Nanomed Biotechnol, 44(2): 672-679. [DOI:10.3109/21691401.2014.978980]
40. Jiang J, Pi J, Cai J (2018) The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg Chem Appl, 2018. [DOI:10.1155/2018/1062562]
41. Hartwig A (2001) Role of magnesium in genomic stability. Mutat Res Rev Mutat Res, 475(1-2): 113-121. [DOI:10.1016/S0027-5107(01)00074-4]
42. Luscombe NM, Laskowski RA, Thornton JM (2001) Amino acid-base interactions: A three-dimensional analysis of protein-DNA interactions at an atomic level. Nucleic Acids Res, 29(13): 2860-2874. [DOI:10.1093/nar/29.13.2860]
43. Klungland A, Rosewell I, Hollenbach, et al. (1999) Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage. Proc Natl Acad Sci, 96(23): 13300-13305. [DOI:10.1073/pnas.96.23.13300]
44. Møller P and Wallin H (1998) Adduct formation, mutagenesis and nucleotide excision repair of DNA damage produced by reactive oxygen species and lipid peroxidation product. Mutat Res Rev Mutat Res, 410(3): 271-290. [DOI:10.1016/S1383-5742(97)00041-0]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shaheen R, Bt Nik Ab Razak N, Radhi M, Binti Suardi N, Mohammed M. Comparative bio-effect of gadolinium with alternative contrast medium of magnesium chloride and zinc oxide nanoparticles on single-strand DNA following exposure to magnetic resonance imaging. Int J Radiat Res 2024; 22 (1) :131-137
URL: http://ijrr.com/article-1-5224-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 22, Issue 1 (1-2024) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 48 queries by YEKTAWEB 4645