[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 22, Issue 1 (1-2024) ::
Int J Radiat Res 2024, 22(1): 155-161 Back to browse issues page
Inhibitive property of chamomile against gamma-rays induced neurodegenerative disorders in mice
S.S. Tawfik , A.A. Elkady , R.M. Ebrahim , W.A. El khouly , A.A. Ali
Health Radiation Research Department, National Centre for Radiation Research and Technology (NCRRT), P. O. Box 29, Nasr City, Cairo, Egypt. Egyptian Atomic Energy Authority, Nasr City, Cairo, Egypt , elkadyah13@gmail.com
Abstract:   (312 Views)
Background: Chamomile is a supplementary food all over the world. The chamomile inhibitive effect on neurodegenerative disorders in γ-irradiated mice was investigated. Materials and Methods: Twenty-four mice were divided into 4 groups; control, chamomile-treated, γ-irradiated (8 Gy), and chamomile-treated and irradiated. Brain total thiols, lipid peroxidation (LP), nitric oxide (NO), reduced- and oxidized-glutathiones (GSH & GSSG), protein carbonyl (PC), antioxidant enzymatic activities and acetylcholinesterase (AChEA) were measured. The brain histopathology sections were observed. Results: A significant increase of levels of total thiols, LP, NO, GSSG, PC and AChEA activity and a decrease of the antioxidant enzymatic activities in the 8 Gy gamma-irradiated group compared to the controls. In chamomile-treated all estimated indices were considerably ameliorated in respect to control standards. Also, the chamomile intake has diminished the histopathological cerebrum alterations such as severe congestion, perivascular oedema, several apoptotic neurons and spongy degenerative changes. Conclusion: Chamomile may protect the brain from oxidative injury induced by γ-rays through its ability to inhibit LP, replenish the GSH level and antioxidant enzymes activity.
Keywords: Chamomile, neurodegenerative disorders, γ-rays, mice.
Full-Text [PDF 1293 kb]   (147 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. Akyüz E, Saleem QH, Sari C, et al. (2023) Enlightening the mechanism of ferroptosis in epileptic heart. Curr Med Chem, Feb 23. Under press. doi: 10.2174/0929867330666230223103524. [DOI:10.2174/0929867330666230223103524]
2. Sukati S, Ho J, Chaiswing L, Sompol P, Pandit H, Wei W, Izumi T, Chen Q, Weiss H, Noel T, Bondada S, Allan Butterfield D, St Clair DK (2022) Extracellular vesicles released after cranial radiation: An insight into an early mechanism of brain injury. Brain Res, 1782:147840. [DOI:10.1016/j.brainres.2022.147840]
3. Tuo QZ, Zhang ST, Lei P (2022) Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med Res Rev, 42(1): 259-305. [DOI:10.1002/med.21817]
4. Feigin VL, Brainin M, Norrving B, et al. (2022) World stroke organization (WSO): Global stroke fact sheet 2022. Int J Stroke, 17(1):18-29. Erratum in: Int J Stroke, 17(4): 478. PMID: 34986727. [DOI:10.1177/17474930211065917]
5. Pipová KN, Kisková T, Vilhanová K, et al. (2020) Melatonin mitigates hippocampal and cognitive impairments caused by prenatal irradiation. Eur J Neurosci, 52(6): 3575-3594. [DOI:10.1111/ejn.14687]
6. Wang L, Li C, Sreeharsha N, et al. (2020) Neuroprotective effect of Wogonin on Rat's brain exposed to gamma irradiation. J Photochem Photobiol B, 204:111775. [DOI:10.1016/j.jphotobiol.2020.111775]
7. Ahsan A, Liu M, Zheng Y, et al. (2021) Natural compounds modulate the autophagy with potential implication of stroke. Acta Pharm Sin B, 11(7):1708-1720. [DOI:10.1016/j.apsb.2020.10.018]
8. Shen G, Hu S, Zhao Z, et al. (2021) C-Type Natriuretic peptide ameliorates vascular injury and improves neurological outcomes in neonatal hypoxic-ischemic brain injury in mice. Int J Mol Sci, 22(16):8966. [DOI:10.3390/ijms22168966]
9. Elazab ST, Soliman AF, Nishikawa Y (2021) Effect of some plant extracts from Egyptian herbal plants against Toxoplasma gondii tachyzoites in vitro. J Vet Med Sci, 83(1):100-107. [DOI:10.1292/jvms.20-0458]
10. El Mihyaoui A, Esteves da Silva JCG, et al. (2022) Chamomile (Matricaria chamomilla L.): A review of ethnomedicinal use, phytochemistry and pharmacological uses. Life (Basel), 12(4):479. [DOI:10.3390/life12040479]
11. Ali R, Tariq S, Kareem O, Fayaz F, et al. (2021) Nutraceuticals for sleep disorders. Comb Chem High Throughput Screen, 24(10):1583-1592. [DOI:10.2174/1386207324666210121111446]
12. Parham S, Kharazi AZ, Bakhsheshi-Rad HR, et al. (2020) Antioxidant, antimicrobial and antiviral properties of herbal materials. Antioxidants (Basel), 9(12):1309. [DOI:10.3390/antiox9121309]
13. Park SH, Kim DS, Oh J, et al. (2021) Matricaria chamomilla (Chamomile) ameliorates muscle atrophy in mice by targeting protein catalytic pathways, myogenesis, and mitochondrial dysfunction. Am J Chin Med, 49(6):1493-1514. [DOI:10.1142/S0192415X21500701]
14. Ling C, Lei C, Zou M, et al. (2020) Neuroprotective effect of apigenin against cerebral ischemia/reperfusion injury. J Int Med Res, 48(9): 300060520945859. [DOI:10.1177/0300060520945859]
15. Malik MA, Alshehri AA, Abomuti MA, et al. (2021) Bioengineered Matricaria recutita extract-assisted palladium nanoparticles for the congo red dye degradation and catalytic reduction of 4-nitrophenol to 4-aminophenol. Toxics, 9(5): 103. [DOI:10.3390/toxics9050103]
16. Srivastava JK and Gupta S (2009) Health promoting benefits of chamomile in the elderly population. In: Complementary and alternative therapies and the aging population. Chap. 8, pp. 135-158. [DOI:10.1016/B978-0-12-374228-5.00008-1]
17. Kobayashi Y, Nakano Y, Inayama K, et al. (2003) Dietary intake of the flower extracts of German chamomile (Matricaria recutita L.) inhibited compound 48/80-induced itch-scratch responses in mice. Phytomedicine. 10(8): 657-664. [DOI:10.1078/0944-7113-00283]
18. Bell BI, Vercellino J, Brodin NP, et al. (2022) Orthovoltage X-rays exhibit increased efficacy compared with γ-rays in preclinical irradiation. Cancer Res, 82(15): 2678-2691. [DOI:10.1158/0008-5472.CAN-22-0656]
19. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72:248-254. [DOI:10.1016/0003-2697(76)90527-3]
20. Suvarna KS, Layton C, Bancroft JD, Bancroft's Eds. (2013) Theory and Practice of Histological Techniques, 7th Edition, Churchill Livingstone, Philadelphia, USA, P. 766.
21. Snedecor GW and Cochran WG (1994) Statistical Methods, 8th Edition, Calcutta, India: Oxford & IBH Publishing Co, p. 503.
22. Oguro A, Fujita K, Ishihara Y, Yamamoto M, Yamazaki T (2021) DHA and its metabolites have a protective role against methylmercury-induced neurotoxicity in mouse primary neuron and SH-SY5Y cells. Int J Mol Sci, 22(6): 3213. [DOI:10.3390/ijms22063213]
23. Okuyama S, Sawamoto A, Nakajima M, Furukawa Y (2021) The search for citrus components with neuroprotective and anti-dementia effects in the mouse brain. Yakugaku Zasshi. 141(6): 819-824. [DOI:10.1248/yakushi.20-00251-1]
24. Hieu TH, Dibas M, Surya Dila KA, et al. (2019) Therapeutic efficacy and safety of chamomile for state anxiety, generalized anxiety disorder, insomnia, and sleep quality: A systematic review and meta-analysis of randomized trials and quasi-randomized trials. Phytother Res, 33(6): 1604-1615. [DOI:10.1002/ptr.6349]
25. Kim M, Jung J, Jeong NY, Chung HJ (2019) The natural plant flavonoid apigenin is a strong antioxidant that effectively delays peripheral neurodegenerative processes. Anat Sci Int, 94(4): 285-294. [DOI:10.1007/s12565-019-00486-2]
26. Hajaji S, Jabri MA, Alimi D, et al. (2019) Chamomile methanolic extract mitigates small bowel inflammation and ros overload related to the intestinal nematodes infection in mice. Acta Parasitol, 64(1): 152-161. [DOI:10.2478/s11686-019-00027-x]
27. Navigatore Fonzo L, Alfaro M, Mazaferro P, et al. (2021) An intracerebroventricular injection of amyloid-beta peptide (1-42) aggregates modifies daily temporal organization of clock factors expression, protein carbonyls and antioxidant enzymes in the rat hippocampus. Brain Res, 1767:147449. [DOI:10.1016/j.brainres.2021.147449]
28. Luo SY, Liu C, Ding J, et al. (2021) Scavenging reactive oxygen species is a potential strategy to protect Larimichthys crocea against environmental hypoxia by mitigating oxidative stress. Zool Res, 42(5):592-605. [DOI:10.24272/j.issn.2095-8137.2021.079]
29. Purushothaman B and Sumathi T (2021) 5,6,7 trihydroxy flavone armoured neurodegeneration caused by Quinolinic acid induced huntington's like disease in rat striatum - reinstating the level of brain neurotrophins with special reference to cognitive-socio behaviour, biochemical and histopathological aspects. Neurosci Res, 174: 25-35. [DOI:10.1016/j.neures.2021.08.003]
30. Fu C, Wu Y, Liu S, et al. (2022) Rehmannioside A improves cognitive impairment and alleviates ferroptosis via activating PI3K/AKT/Nrf2 and SLC7A11/GPX4 signaling pathway after ischemia. J Ethnopharmacol, 289:115021. [DOI:10.1016/j.jep.2022.115021]
31. Moreno-Sánchez R, Gallardo-Pérez JC, Rodríguez-Enríquez S, et al. (2017) Control of the NADPH supply for oxidative stress handling in cancer cells. Free Radic Biol Med, 112: 149-161. [DOI:10.1016/j.freeradbiomed.2017.07.018]
32. Vinokurov AY, Stelmashuk OA, Ukolova PA, et al. (2021) Brain region specificity in reactive oxygen species production and maintenance of redox balance. Free Radic Biol Med, 174:195-201. [DOI:10.1016/j.freeradbiomed.2021.08.014]
33. Habashy NH, Kodous AS, Abu-Serie MM (2021) Targeting ROS/NF-κB sigaling pathway by the seedless black Vitis vinifera polyphenols in CCl4-intoxicated kidney, lung, brain, and spleen in rats. Sci Rep, 11(1):16575. [DOI:10.1038/s41598-021-96008-0]
34. Zosangzuali M, Lalremruati M, Lalmuansangi C, et al. (2021) Effects of radiofrequency electromagnetic radiation emitted from a mobile phone base station on the redox homeostasis in different organs of Swiss albino mice. Electromagn Biol Med, 40(3):393-407. [DOI:10.1080/15368378.2021.1895207]
35. Motallebzadeh E, Tameh AA, Zavareh SAT, et al. (2020) Neuroprotective effect of melatonin on radiation-induced oxidative stress and apoptosis in the brainstem of rats. J Cell Physiol. 235(11):8791-8798. [DOI:10.1002/jcp.29722]
36. Thabet NM, Rashed ER, Abdel-Rafei MK, Moustafa EM (2021) Modulation of the nitric oxide/BH4 pathway protects against irradiation-induced neuronal damage. Neurochem Res, 46(7):1641-1658. [DOI:10.1007/s11064-021-03306-0]
37. Bourgognon JM, Spiers JG, Robinson SW, et al. (2021) Inhibition of neuroinflammatory nitric oxide signaling suppresses glycation and prevents neuronal dysfunction in mouse prion disease. Proc Natl Acad Sci USA, 118(10): e2009579118. [DOI:10.1073/pnas.2009579118]
38. Wang Y, Cai X, Wu Z, et al. (2021) Tetrandrine attenuates ischemia/reperfusion‑induced neuronal damage in the subacute phase. Mol Med Rep, 23(4): 297. [DOI:10.3892/mmr.2021.11936]
39. Günther M, Al Nimer F, Piehl F, et al. (2018) Susceptibility to oxidative stress is determined by genetic background in neuronal cell cultures. eNeuro, 5(2): ENEURO.0335-17.2018. [DOI:10.1523/ENEURO.0335-17.2018]
40. Maiti AK, Spoorthi BC, Saha NC, Panigrahi AK (2018) Mitigating peroxynitrite mediated mitochondrial dysfunction in aged rat brain by mitochondria-targeted antioxidant MitoQ. Biogerontology, 19(3-4):271-286. [DOI:10.1007/s10522-018-9756-6]
41. Sharma A, Shrivastava S, Shukla S (2021) Oxidative damage in the liver and brain of the rats exposed to frequency-dependent radiofrequency electromagnetic exposure: Biochemical and histopathological evidence. Free Radic Res, 1-12. [DOI:10.1080/10715762.2021.1966001]
42. Zhao Z, Liu T, Zhu S, et al. (2021) Development and evaluation studies of Corylin loaded nanostructured lipid carriers gel for topical treatment of UV-induced skin aging. Exp Gerontol, 153:111499. [DOI:10.1016/j.exger.2021.111499]
43. Zhang Y, Zhu XB, Zhao JC, et al. (2020) Neuroprotective effect of resveratrol against radiation after surgically induced brain injury by reducing oxidative stress, inflammation, and apoptosis through NRf2/HO-1/NF-κB signaling pathway. J Biochem Mol Toxicol, 34(12):e22600. [DOI:10.1002/jbt.22600]
44. Liu B, Kou J, Li F, et al. (2020) Lemon essential oil ameliorates age-associated cognitive dysfunction via modulating hippocampal synaptic density and inhibiting acetylcholinesterase. Aging (Albany NY), 12(9): 8622-8639. [DOI:10.18632/aging.103179]
45. Silman I (2021) The multiple biological roles of the cholinesterases. Prog Biophys Mol Biol, 162: 41-56. [DOI:10.1016/j.pbiomolbio.2020.12.001]
46. Fu C, Zheng Y, Lin K, et al. (2021) Neuroprotective effect of apigenin against hypoxic-ischemic brain injury in neonatal rats via activation of the PI3K/Akt/Nrf2 signaling pathway. Food Funct, 12(5): 2270-2281. [DOI:10.1039/D0FO02555K]
47. Jabri MA, Rtibi K, Sebai H (2022) Chamomile decoction mitigates high fat diet-induced anxiety-like behavior, neuroinflammation and cerebral ROS overload. Nutr Neurosci, 25(7):1350-1361. [DOI:10.1080/1028415X.2020.1859727]
48. Niknam S, Tofighi Z, Faramarzi MA, et al. (2021) Polyherbal combination for wound healing: Matricaria chamomilla L. and Punica granatum L. Daru, 29(1):133-145. [DOI:10.1007/s40199-021-00392-x]
49. Bastaki SMA, Amir N, Adeghate E, Ojha S (2021) Nerolidol, a sesquiterpene, attenuates oxidative stress and inflammation in acetic acid-induced colitis in rats. Mol Cell Biochem, 476(9): 3497-3512. [DOI:10.1007/s11010-021-04094-5]
50. Zhang Y, Xu H, Hu Z, et al. (2022) Eleocharis dulcis corm: Phytochemicals, health benefits, processing and food products. J Sci Food Agric, 102(1): 19-40. [DOI:10.1002/jsfa.11508]
51. Bhardwaj K, Silva AS, Atanassova M, et al. (2021) Conifers phytochemicals: A valuable forest with therapeutic potential. Molecules, 26(10): 3005. [DOI:10.3390/molecules26103005]
52. Schönknecht K, Surdacka A, Rudenko L (2021) Effectiveness of composed herbal extract in the treatment of gingivitis and oral and pharyngeal mucosa - Review of studies. Wiad Lek, 74(7):1737-1749. [DOI:10.36740/WLek202107131]
53. Celik H, Kucukler S, Comakli S, et al. (2020) Morin attenuates ifosfamide-induced neurotoxicity in rats via suppression of oxidative stress, neuroinflammation and neuronal apoptosis. Neurotoxicology, 76:126-137. [DOI:10.1016/j.neuro.2019.11.004]
54. Kim JS, Yang M, Kim SH, et al. (2013) Neurobiological toxicity of radiation in hippocampal cells. Histol Histopathol, 28(3): 301-310.
55. El-Maraghi EF, Abdel-Fattah KI, Soliman SM, El-Sayed WM (2018) Taurine provides a time-dependent amelioration of the brain damage induced by γ-irradiation in rats. J Hazard Mater, 359:40-46. [DOI:10.1016/j.jhazmat.2018.07.005]
56. Elsonbaty SM and Ismail AFM (2020) Nicotine encourages oxidative stress and impairment of rats' brain mitigated by Spirulina platensis lipopolysaccharides and low-dose ionizing radiation. Arch Biochem Biophys, 689:108382. [DOI:10.1016/j.abb.2020.108382]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tawfik S, Elkady A, Ebrahim R, El khouly W, Ali A. Inhibitive property of chamomile against gamma-rays induced neurodegenerative disorders in mice. Int J Radiat Res 2024; 22 (1) :155-161
URL: http://ijrr.com/article-1-5239-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 22, Issue 1 (1-2024) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.05 seconds with 48 queries by YEKTAWEB 4645