[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
IJRR Information::
For Authors::
For Reviewers::
Subscription::
News & Events::
Web Mail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
ISSN
Hard Copy 2322-3243
Online 2345-4229
..
Online Submission
Now you can send your articles to IJRR office using the article submission system.
..

AWT IMAGE

AWT IMAGE

:: Volume 22, Issue 2 (4-2024) ::
Int J Radiat Res 2024, 22(2): 395-401 Back to browse issues page
Accuracy of diffusion-weighted imaging in differentiation between medulloblastoma and ependymoma tumors
K.M. Abushab , S. Abu-Laila , M. Tabash , K. Quffa , A. Shaltout , Y.S. Alajerami , H.H. Mansour , H. Beituni
Medical Imaging Department, Applied Medical Sciences Faculty, Al Azhar University-Gaza, Palestinian Territory , yasser_ajr@hotmail.com
Abstract:   (745 Views)
Background: To investigate the accuracy of diffusion-weighted imaging (DWI) in the differentiation between medulloblastoma and ependymoma tumors. Materials and Methods: A retrospectively analytical study was used. Eighty-nine patients with medulloblastoma and ependymoma tumors were included, as proved by the histopathological findings (2016–2019), and their ages ranged from 1 month to 15 years old. All DWI data were transferred through RadiAnt Dicom viewer and apparent diffusion coefficient (ADC) value calculations. Statistical analyses were conducted utilizing statistical software (MedCalc, version 19.0.4).  Results: The value of ADCmean was the significant ADC value that distinguished medulloblastoma from ependymoma. The value of ADCmean was inversely proportional to tumor grades. The ADCmean value at the ependymoma tumor was 1.141±0.293 mm2/s, whereas the ADCmean value at medulloblastoma tumor was 0.661± 0.123 mm2/s. Spearman’s correlation shows a significant negative correlation, and ADCmean (r = -0.72, P-value = 0.0001). The ADCmean has confirmed the highest diagnostic accuracy with an area under the curve (AUC) of 0.984 in cases in reference to histopathological findings as a gold standard and detects medulloblastomas and ependymomas tumors with sensitivity (96.92%), specificity (95.83%), PPV (98.4%,), NPV (92%) and accuracy (92.7%). There is a high level of agreement between the results of ADC value and histopathological findings, which is excellent agreement between the two tests as Kappa =0.915. ADCmean could serve as a base to distinguish medulloblastoma from ependymoma tumors with high accuracy. Conclusion: Using ADC map value to diagnose pediatric tumors could provide reliable and objective evidence for pre-operative differentiation.
Keywords: Diffusion-weighted imaging, medulloblastoma, ependymoma.
Full-Text [PDF 610 kb]   (355 Downloads)    
Type of Study: Original Research | Subject: Radiation Biology
References
1. Partap S and Monje M (2020) Pediatric brain tumors. CONTINUUM: Lifelong Learning in Neurology, 26(6): 1553-1583. [DOI:10.1212/CON.0000000000000955]
2. Louis DN, Perry A, Reifenberger G, et al. (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta neuropathologica, 131(6): 803-820 [DOI:10.1007/s00401-016-1545-1]
3. Kumar L, Deepa SF, Moinca I, et al. (2015) Medulloblastoma: A common pediatric tumor: Prognostic factors and predictors of outcome. Asian Journal of Neurosurgery, 10(01): 50-50. [DOI:10.4103/1793-5482.151516]
4. Ostrom, QT, De Blank PM, Kruchko C, et al. (2014) Alex's lemonade stand Foundation infant and childhood primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. Neuro-Oncology, 16(10): x1-x36. [DOI:10.1093/neuonc/nou327]
5. Kline CN, Packer RJ, Hwang EI, et al. (2017) Case-based review: Pediatric medulloblastoma. Neuro-Oncology Practice, 4(3): 138-150. [DOI:10.1093/nop/npx011]
6. Quinlan A, Rizzolo D (2017). Understanding medulloblastoma. JAAPA, 30(10): 30-36. [DOI:10.1097/01.JAA.0000524717.71084.50]
7. Cachia D, Johnson DR, Kaufmann TJ, et al. (2018) Case-based review: Ependymomas in adults. Neuro-Oncology Practice, 5(3): 142-153. [DOI:10.1093/nop/npy026]
8. Choi J, Chang K, Yu IK, et al. (2002). Intracranial and spinal Ependymomas: Review of MR images in 61 patients. Korean Journal of Radiology, 3(4): 219. [DOI:10.3348/kjr.2002.3.4.219]
9. Mansour HH, Alajerami YS, Foster T (2021) Estimation of radiation doses and lifetime attributable risk of radiation-induced cancer from a single coronary artery bypass graft computed tomography angiography. Electron J Gen Med, 18(6): em317. [DOI:10.29333/ejgm/11208]
10. Abushab KM, Mansour HH, Alajerami YS (2021) Assessment of patient radiation dose in dual-phase abdominopelvic computed tomography. Int J Radiat Res, 20(4): 879-882.
11. Porto L, Jurcoane A, Schwabe D, Kieslich M, Hattingen E (2013). Differentiation between high and low grade tumours in paediatric patients by using apparent diffusion coefficients. European Journal of Paediatric Neurology, 17(3): 302-307. [DOI:10.1016/j.ejpn.2012.12.002]
12. Hygino da Cruz LC, Vieira IG, Domingues RC (2011) Diffusion MR imaging: An important tool in the assessment of brain tumors. Neuroimaging Clinics of North America, 21(1): 27-49. [DOI:10.1016/j.nic.2011.01.010]
13. Pierce T, Kranz PG, Roth C, et al. (2014) Use of apparent diffusion coefficient values for diagnosis of pediatric posterior fossa tumors. The Neuroradiology Journal, 27(2): 233-244. [DOI:10.15274/NRJ-2014-10027]
14. Huisman T (2010) Diffusion-weighted and diffusion tensor imaging of the brain, made easy. Cancer Imaging, 10(1A): S163-S171. [DOI:10.1102/1470-7330.2010.9023]
15. Huisman TA (2003) Diffusion-weighted imaging: Basic concepts and application in cerebral stroke and head trauma. European Radiology, 13(10): 2283-2297. [DOI:10.1007/s00330-003-1843-6]
16. Eidel O, Neumann J, Burth S, et al. (2016) Automatic analysis of Cellularity in glioblastoma and correlation with ADC using trajectory analysis and automatic nuclei counting. Plos One, 11(7): e0160250. [DOI:10.1371/journal.pone.0160250]
17. Yamasaki F, Kurisu K, Satoh K, et al. (2005) Apparent diffusion coefficient of human brain tumors at MR imaging. Radiology, 235(3): 985-991. [DOI:10.1148/radiol.2353031338]
18. Gauvain KM, McKinstry RC, Mukherjee P, et al. (2001) Evaluating pediatric brain tumor Cellularity with diffusion-tensor imaging. American Journal of Roentgenology, 177(2): 449-454. [DOI:10.2214/ajr.177.2.1770449]
19. Rumboldt Z, Camacho DL, Lake D, et al. (2006) Apparent diffusion coefficients for differentiation of cerebellar tumors in children. AJNR Am J Neuroradiol, 27(6): 1362-1369.
20. Jaremko J, Jans L, Coleman L, Ditchfield M (2010) Value and limitations of diffusion-weighted imaging in grading and diagnosis of pediatric posterior fossa tumors: Fig 1. American Journal of Neuroradiology, 31(9): 1613-1616. [DOI:10.3174/ajnr.A2155]
21. Stadnik TW, Demaerel P, Luypaert RR, et al. (2003) Imaging tutorial: Differential diagnosis of bright lesions on diffusion-weighted MR images. RadioGraphics, 23(1): e7-e7. [DOI:10.1148/rg.e7]
22. Sener RN (2001) Diffusion MRI: Apparent diffusion coefficient (ADC) values in the normal brain and a classification of brain disorders based on ADC values. Computerized Medical Imaging and Graphics, 25(4): 299-326. [DOI:10.1016/S0895-6111(00)00083-5]
23. Surov A, Meyer HJ, Wienke A (2017) Correlation between minimum apparent diffusion coefficient (ADCmin) and tumor cellularity: A meta-analysis. Anticancer Research, 37(7): 3807-3810. [DOI:10.21873/anticanres.11758]
24. Zong RL, Geng L, Wang X, Xie D (2019) Diagnostic performance of apparent diffusion coefficient for prediction of grading of pancreatic neuroendocrine tumors. Pancreas, 48(2): 151-160. [DOI:10.1097/MPA.0000000000001212]
25. Barajas R, Rubenstein J, Chang J, et al. (2009) Diffusion-weighted MR imaging derived apparent diffusion coefficient is predictive of clinical outcome in primary central nervous system lymphoma. American Journal of Neuroradiology, 31(1): 60-66. [DOI:10.3174/ajnr.A1750]
26. Wu X, Pertovaara H, Dastidar P, et al. (2013) ADC measurements in diffuse large B-cell lymphoma and follicular lymphoma: A DWI and cellularity study. European Journal of Radiology, 82(4): e158-e164. [DOI:10.1016/j.ejrad.2012.11.021]
27. Mustafa WF,Abbas M, Elsorougy L (2020) Role of diffusion-weighted imaging in differentiation between posterior fossa brain tumors. The Egyptian Journal of Neurology, Psychiatry and Neurosurgery, 56(1): 1-8. [DOI:10.1186/s41983-019-0145-0]
28. Koh DM and Collins DJ (2007) Diffusion-weighted MRI in the body: Applications and challenges in oncology. American Journal of Roentgenology, 188(6): 1622-1635. [DOI:10.2214/AJR.06.1403]
29. Ellison D (2002) Classifying the Medulloblastoma: Insights from morphology and molecular genetics. Neuropathology and Applied Neurobiology, 28(4): 257-282. [DOI:10.1046/j.1365-2990.2002.00419.x]
30. Chen Z, Ma L, Lou X, Zhou Z (2010) Diagnostic value of minimum apparent diffusion coefficient values in prediction of neuroepithelial tumor grading. Journal of Magnetic Resonance Imaging, 31(6): 1331-1338. [DOI:10.1002/jmri.22175]
31. Woodhams R, Kakita S, Hata H, et al. (2009) Diffusion-weighted imaging of Mucinous carcinoma of the breast: Evaluation of apparent diffusion coefficient and signal intensity in correlation with histologic findings. American Journal of Roentgenology, 193(1): 260-266. [DOI:10.2214/AJR.08.1670]
32. Mebis W, Snoeckx A, Corthouts B, et al. (2020) Correlation between apparent diffusion coefficient value on MRI and Histopathologic WHO grades of neuroendocrine tumors. Journal of the Belgian Society of Radiology, 104(1). [DOI:10.5334/jbsr.1925]
33. Koral K, Alford R, Choudhury N, et al. (2014) Applicability of apparent diffusion coefficient ratios in preoperative diagnosis of common pediatric cerebellar tumors across two institutions. Neuroradiology, 56(9): 781-788. [DOI:10.1007/s00234-014-1398-z]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abushab K, Abu-Laila S, Tabash M, Quffa K, Shaltout A, Alajerami Y, et al . Accuracy of diffusion-weighted imaging in differentiation between medulloblastoma and ependymoma tumors. Int J Radiat Res 2024; 22 (2) :395-401
URL: http://ijrr.com/article-1-5447-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 22, Issue 2 (4-2024) Back to browse issues page
International Journal of Radiation Research
Persian site map - English site map - Created in 0.12 seconds with 50 queries by YEKTAWEB 4704