1. Partap S and Monje M (2020) Pediatric brain tumors. CONTINUUM: Lifelong Learning in Neurology, 26(6): 1553-1583. [ DOI:10.1212/CON.0000000000000955] 2. Louis DN, Perry A, Reifenberger G, et al. (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta neuropathologica, 131(6): 803-820 [ DOI:10.1007/s00401-016-1545-1] 3. Kumar L, Deepa SF, Moinca I, et al. (2015) Medulloblastoma: A common pediatric tumor: Prognostic factors and predictors of outcome. Asian Journal of Neurosurgery, 10(01): 50-50. [ DOI:10.4103/1793-5482.151516] 4. Ostrom, QT, De Blank PM, Kruchko C, et al. (2014) Alex's lemonade stand Foundation infant and childhood primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. Neuro-Oncology, 16(10): x1-x36. [ DOI:10.1093/neuonc/nou327] 5. Kline CN, Packer RJ, Hwang EI, et al. (2017) Case-based review: Pediatric medulloblastoma. Neuro-Oncology Practice, 4(3): 138-150. [ DOI:10.1093/nop/npx011] 6. Quinlan A, Rizzolo D (2017). Understanding medulloblastoma. JAAPA, 30(10): 30-36. [ DOI:10.1097/01.JAA.0000524717.71084.50] 7. Cachia D, Johnson DR, Kaufmann TJ, et al. (2018) Case-based review: Ependymomas in adults. Neuro-Oncology Practice, 5(3): 142-153. [ DOI:10.1093/nop/npy026] 8. Choi J, Chang K, Yu IK, et al. (2002). Intracranial and spinal Ependymomas: Review of MR images in 61 patients. Korean Journal of Radiology, 3(4): 219. [ DOI:10.3348/kjr.2002.3.4.219] 9. Mansour HH, Alajerami YS, Foster T (2021) Estimation of radiation doses and lifetime attributable risk of radiation-induced cancer from a single coronary artery bypass graft computed tomography angiography. Electron J Gen Med, 18(6): em317. [ DOI:10.29333/ejgm/11208] 10. Abushab KM, Mansour HH, Alajerami YS (2021) Assessment of patient radiation dose in dual-phase abdominopelvic computed tomography. Int J Radiat Res, 20(4): 879-882. 11. Porto L, Jurcoane A, Schwabe D, Kieslich M, Hattingen E (2013). Differentiation between high and low grade tumours in paediatric patients by using apparent diffusion coefficients. European Journal of Paediatric Neurology, 17(3): 302-307. [ DOI:10.1016/j.ejpn.2012.12.002] 12. Hygino da Cruz LC, Vieira IG, Domingues RC (2011) Diffusion MR imaging: An important tool in the assessment of brain tumors. Neuroimaging Clinics of North America, 21(1): 27-49. [ DOI:10.1016/j.nic.2011.01.010] 13. Pierce T, Kranz PG, Roth C, et al. (2014) Use of apparent diffusion coefficient values for diagnosis of pediatric posterior fossa tumors. The Neuroradiology Journal, 27(2): 233-244. [ DOI:10.15274/NRJ-2014-10027] 14. Huisman T (2010) Diffusion-weighted and diffusion tensor imaging of the brain, made easy. Cancer Imaging, 10(1A): S163-S171. [ DOI:10.1102/1470-7330.2010.9023] 15. Huisman TA (2003) Diffusion-weighted imaging: Basic concepts and application in cerebral stroke and head trauma. European Radiology, 13(10): 2283-2297. [ DOI:10.1007/s00330-003-1843-6] 16. Eidel O, Neumann J, Burth S, et al. (2016) Automatic analysis of Cellularity in glioblastoma and correlation with ADC using trajectory analysis and automatic nuclei counting. Plos One, 11(7): e0160250. [ DOI:10.1371/journal.pone.0160250] 17. Yamasaki F, Kurisu K, Satoh K, et al. (2005) Apparent diffusion coefficient of human brain tumors at MR imaging. Radiology, 235(3): 985-991. [ DOI:10.1148/radiol.2353031338] 18. Gauvain KM, McKinstry RC, Mukherjee P, et al. (2001) Evaluating pediatric brain tumor Cellularity with diffusion-tensor imaging. American Journal of Roentgenology, 177(2): 449-454. [ DOI:10.2214/ajr.177.2.1770449] 19. Rumboldt Z, Camacho DL, Lake D, et al. (2006) Apparent diffusion coefficients for differentiation of cerebellar tumors in children. AJNR Am J Neuroradiol, 27(6): 1362-1369. 20. Jaremko J, Jans L, Coleman L, Ditchfield M (2010) Value and limitations of diffusion-weighted imaging in grading and diagnosis of pediatric posterior fossa tumors: Fig 1. American Journal of Neuroradiology, 31(9): 1613-1616. [ DOI:10.3174/ajnr.A2155] 21. Stadnik TW, Demaerel P, Luypaert RR, et al. (2003) Imaging tutorial: Differential diagnosis of bright lesions on diffusion-weighted MR images. RadioGraphics, 23(1): e7-e7. [ DOI:10.1148/rg.e7] 22. Sener RN (2001) Diffusion MRI: Apparent diffusion coefficient (ADC) values in the normal brain and a classification of brain disorders based on ADC values. Computerized Medical Imaging and Graphics, 25(4): 299-326. [ DOI:10.1016/S0895-6111(00)00083-5] 23. Surov A, Meyer HJ, Wienke A (2017) Correlation between minimum apparent diffusion coefficient (ADCmin) and tumor cellularity: A meta-analysis. Anticancer Research, 37(7): 3807-3810. [ DOI:10.21873/anticanres.11758] 24. Zong RL, Geng L, Wang X, Xie D (2019) Diagnostic performance of apparent diffusion coefficient for prediction of grading of pancreatic neuroendocrine tumors. Pancreas, 48(2): 151-160. [ DOI:10.1097/MPA.0000000000001212] 25. Barajas R, Rubenstein J, Chang J, et al. (2009) Diffusion-weighted MR imaging derived apparent diffusion coefficient is predictive of clinical outcome in primary central nervous system lymphoma. American Journal of Neuroradiology, 31(1): 60-66. [ DOI:10.3174/ajnr.A1750] 26. Wu X, Pertovaara H, Dastidar P, et al. (2013) ADC measurements in diffuse large B-cell lymphoma and follicular lymphoma: A DWI and cellularity study. European Journal of Radiology, 82(4): e158-e164. [ DOI:10.1016/j.ejrad.2012.11.021] 27. Mustafa WF,Abbas M, Elsorougy L (2020) Role of diffusion-weighted imaging in differentiation between posterior fossa brain tumors. The Egyptian Journal of Neurology, Psychiatry and Neurosurgery, 56(1): 1-8. [ DOI:10.1186/s41983-019-0145-0] 28. Koh DM and Collins DJ (2007) Diffusion-weighted MRI in the body: Applications and challenges in oncology. American Journal of Roentgenology, 188(6): 1622-1635. [ DOI:10.2214/AJR.06.1403] 29. Ellison D (2002) Classifying the Medulloblastoma: Insights from morphology and molecular genetics. Neuropathology and Applied Neurobiology, 28(4): 257-282. [ DOI:10.1046/j.1365-2990.2002.00419.x] 30. Chen Z, Ma L, Lou X, Zhou Z (2010) Diagnostic value of minimum apparent diffusion coefficient values in prediction of neuroepithelial tumor grading. Journal of Magnetic Resonance Imaging, 31(6): 1331-1338. [ DOI:10.1002/jmri.22175] 31. Woodhams R, Kakita S, Hata H, et al. (2009) Diffusion-weighted imaging of Mucinous carcinoma of the breast: Evaluation of apparent diffusion coefficient and signal intensity in correlation with histologic findings. American Journal of Roentgenology, 193(1): 260-266. [ DOI:10.2214/AJR.08.1670] 32. Mebis W, Snoeckx A, Corthouts B, et al. (2020) Correlation between apparent diffusion coefficient value on MRI and Histopathologic WHO grades of neuroendocrine tumors. Journal of the Belgian Society of Radiology, 104(1). [ DOI:10.5334/jbsr.1925] 33. Koral K, Alford R, Choudhury N, et al. (2014) Applicability of apparent diffusion coefficient ratios in preoperative diagnosis of common pediatric cerebellar tumors across two institutions. Neuroradiology, 56(9): 781-788. [ DOI:10.1007/s00234-014-1398-z]
|